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Plan for this week

Discuss any problems you couldn’t solve from previous
lectures
We will cover part of Chapter 4 of the notes Fundamentals
of Optimization by R.T. Rockafellar (University of
Washington).
We’ll spend some time with realistic-looking problems.
Coding assignment #4 is due next Monday

FJS MATH 612 2 / 18



CONVEX SETS
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Definition and the simplest examples

A set C is convex when

x0, x1 ∈ C =⇒ (1− τ)x0 + τx1 ∈ C ∀τ ∈ (0,1).

In other words, C contains all segments connecting points of C.
Therefore, C contains the convex hull of any collection of points
of C. (Recall that a set is closed when it contains all its limit
points.)

Boxes. Let I1, . . . , In be closed intervals, possibly unbounded.
Then

I1 × I2 × . . . In ⊂ ×Rn is convex and closed.

Also, if b ∈ Rn, the half-space

{x ∈ Rn : x · b ≤ α} is convex and closed.
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Rules to build convex sets

The finite intersection of convex sets is convex.
If C1 ⊂ Rn and C2 ⊂ Rm are convex, then

C1 × C2 ⊂ Rn+m is convex.

If f is convex, then the level sets

{x ∈ Rn : f (x) ≤ α}

are convex (or empty).
The affine image of a convex set is convex, that is, if
C ⊂ Rn is convex and A ∈ Rm×n, then

{Ax + b : x ∈ C} is convex.
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More examples

The positive orthant

{x ∈ Rn : x ≥ 0} = {(x1, . . . , xn) : xi ≥ 0 ∀i}

is a closed convex set. (It is a particular case of a box.)
The set

{x ∈ Rn : Ax = b}

is convex. Note how this set is the intersection of

{x : Ax ≤ b} ∩ {x : −Ax ≤ −b}

Euclidean balls
{x : |x − x0| ≤ α}

are convex.
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Convex functions defined through convex sets

A function f : Rn → R is convex if and only if the set

C = {(x ,u) ∈ Rn × R : f (x) ≤ u}

is convex.

Proof. If f is convex and (x0,u0), (x1,u1) ∈ C, then for all τ ∈ (0,1)

f ((1− τ)x0 + τx1) ≤ (1− τ)f (x0) + τ f (x1) (f is convex)
≤ (1− τ)u0 + τu1 ((x0,u0), (x1,u1) ∈ C)

and then (1− τ)(x0,u0) + τ(x1,u1) ∈ C. Reciprocally, let C be
convex. Since (x0, f (x0)), (x1, f (x1)) ∈ C, then
(1− τ)(x0, f (x0)) + τ(x1, f (x1)) ∈ C, that is,

f ((1− τ)x0 + τx1) ≤ (1− τ)f (x0) + τ f (x1).
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LINEAR PROGRAMMING
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Setting up the problem

In linear programming we minimize (or maximize) a linear
function (which is therefore convex, and concave)

f (x) = x · c

over a convex set delimited by linear inequalities or equalities

A1x ≤ b1, A2x2 ≥ b2, A3x3 = b3.

When we write x ≤ y , we mean

xi ≤ yi ∀i .
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All inequalities of the same kind

There are many forms of writing the LP problems. We will now
explore some standard ways of writing them.

It is equivalent to have

A1x ≤ b1, A2x2 ≥ b2, A3x3 = b3.

or 
A1
−A2
A3
−A3

 x ≤


b1
−b2
b3
−b3
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LP problem in standard form

Traditionally a linear programming problem has been written in
the following standard form:

maximize c · x

subject to
Ax ≤ b, x ≥ 0.

This standard form has been motivated by the use of some
particular methods that have been programmed for problems
given in this particular format. Much software nowadays do the
change for you. (See MATLAB’s linprog.)
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Change to standard form

We have already seen how to move all inequalities and
equalities to a joint set Ax ≤ b.
Moving from minimization to maximization is just a change
of sign in the objective function.
Sometimes the problem includes bounds for the unknowns

l ≤ x ≤ u.

Then we use the variable x̃ = x − l ≥ 0 and add
inequalities x̃ ≤ u + l .
If we do not have lower bounds (for all or some variables),
write

x = x̃ − x̂ , x̃ ≥ 0, x̂ ≥ 0
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A transformation of the feasible set

Assume that our feasible set is given in standard form

Ax ≤ b x ≥ 0.

We can then add slack variables s = b − Ax and write the
feasible set in added variables[

A −I
] [ x

s

]
= b,

[
x
s

]
≥ 0.

This gives another standard way of writing the feasible set as a
set of non-negative solutions of a linear system:

Dx̂ = b, x̂ ≥ 0.

With this form the number of variables has increased to the
original number of variables plus the number of restrictions in
standard form.
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A toy example

Transform the feasible set

x1 + x2 + x3 ≤ 1, x1 + x2 ≥ −1, x1 ≥ 0, x3 ≥ −1

to standard form and then to a set of non-negative solutions of
a linear system.
Step 1. Let us first create non-negativity conditions for all
variables:

x1 = z1, x2 = z2 − z3, x3 = z4 + 1, z ≥ 0.

We then rewrite the inequalities:

z1 + z2 − z3 + z4 ≤ 0, z1 + z2 − z3 ≥ −1.
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A toy example (2)

Step 2. We now write

z1 + z2 − z3 + z4 ≤ 0, z1 + z2 − z3 ≥ −1

in the equivalent form

z1 + z2 − z3 + z4 ≤ 0, −z1 − z2 + z3 ≤ 1.

This finishes the transformation of the feasible set to standard
form
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A toy example (3)

Introduction of slack variables.

z5 = −z1 − z2 + z3 − z4 ≥ 0, z6 = 1 + z1 + z2 − z3 ≥ 0.

Therefore the feasible set can be rewritten as

[
1 1 −1 1 −1 0
−1 −1 1 0 0 1

]


z1
z2
z3
z4
z5
z6

 =

[
0
1

]
, z ≥ 0

We finally need to recall how to obtain the original variables

x1 = z1, x2 = z2 − z3, x3 = z4 + 1.
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From a classic book...

Suppose General Motors makes a profit of $200 on each
Chevrolet, $300 on each Buick, and $500 on each Cadillac.
These get 20, 17, and 14 miles per gallon, respectively, and
Congress insists that the average car must get 18. The plant
can assemble a Chevrolet in 1 minute, a Buick in 2 minutes,
and a Cadillac in 3 minutes. What is the maximum profit in 8
hours (480 minutes)?
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Another one...

Federal bonds pay 5%, municipals pay 6%, and junk bonds pay
9%. We can buy amounts x , y , z not exceeding a total of
$100,000. The problem is to maximize the interest, with two
constraints:

no more than $20,000 can be invested in junk bonds, and
the portfolio’s average quality must be no lower than
municipals, so x ≥ z.
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