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Convex sets and convex functions

A set C is convex when
Xo,X1€C — (1—T)X0+TX1€C VT€(0,1).

We will care about closed convex sets. A function f: C — R is
convex in C when

f(1-7)X+7x1) < (1-7)f(x0)+7f(x1),  Xx0,x1€C, 0<7<1.

(The definition of strict convexity is not repeated.) Note that it
does not make that much sense to talk about convex functions
on non-convex domains (unless they are defined in a larger
convex set). Why?
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A new definition of stationary points

Let f be a C' function on a convexset CC R". lfx € Cis a
minimum, then

VIiX)-(x—Xx)>0 Vx € C.
Proof. Consider the function
[0,1] 27— ¢(7) = (X + 7(x — X)).

Then ¢ has a local minimum at = = 0 which implies that ¢’(0) > 0.
This is the condition in the statement.
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A new definition of stationary points (cnt'd)

Let f: R” — R be a convex C' function. Then
f(x) — f(x) > VFf(X) - (x — X) Vx,x € R".
Assume now that X € C (C being a convex set) satisfies
Vix)-(x—Xx)>0 VxeC.

Then X is a global minimum of f in C.
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One result

Let f be a convex function in a convex set C. If X is a local
minimum, it is a global minimum. (Therefore, all local minima
give the same optimal value.)

Proof. Let x € C and take 0 < 7 < 1 small enough so that
f(x) < f((1 —7)x +7x) < (1 — 7)f(X) + 7f(x).

(The smallness of 7 is used in the first inequality. How?) Simplifying,
it is clear that
f(x) < f(x).
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Another result

Let f be a convex function in a convex set C. The set of all
minima is convex.

Proof. Let xg, x; be two minima. The previous result shows that
f(x0) = f(x1).
Let then x = (1 — 7)xo + 7X; and note that

f(xo) f(x) = H((1 = )% + 7x1)

<
< (1 =7)f(x0) +7f(x1) = f(X0).

Then
f(Xo):f((1—T)X0+TX1) V7’€(0,1)7

so the points in the segment connecting two minima are also minima.
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A consequence

If f is a strictly convex function on a convex set C, then the
minimum of f is either unique or not attained. If the set C is
closed and bounded, then the minimum is attained.
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THE GRADIENT PROJECTION
METHOD
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Ingredients

@ A closed bounded convex set C

@ The projection onto the set C. This is a nonlinear
operator P : R" — C that solves the minimization problem:

Px e C, |Ix —Px|2 < ||x—2z|2 VzeC.

@ A convex function f.

FJS MATH 612



The idea of the algorithm

If we are at the point x, we choose to descend in the gradient
direction w = —Vf(x). It’s likely this will take us outside the
feasible set C. Therefore, instead of doing a line search for the
function

o(t) = f(x +71w)

we do it for
o(t) = f(P(x + Tw)).

We will use backtracking. Instead of trying to get
(1) < ¢(0) + Br¢'(0)

(we might not have a differentiable ¢ because of P), we will
need to modify the right-hand side of this inequality.
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Adapting the backtracking algorithm

Without restrictions, the inequality is
f(x +71w) < f(x)+ VI(x) - (X + 7w — X)

or
f(y) < f(x) + BVI(x) - (y — x) y=x+r1w.

Instead, we do

fly) < f(x)+ 5 (_!}/TXH§> y=P(x+71w).
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forv > 1

w = —VIf(x)

po = f(x)

T ="
y=Px+71w)

1= 1f(y)

o1 = |ly — x|/
while 1 > @o + 78

T=TY
y=P(x+71w)
01 = f(y)
P1 = |ly — x||?/7?
end
X=X+TW

stopping criterion

FJS

Gradient descent with projection and backtracking
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For you to think...

@ If C={x: ||x— xo|| < R}, itis easy to compute the
operator P. How?

@ If C = [ay,by] x ... x [an, by] is @ bounded closed box, it is
also easy to find Px. How?

@ If Cis a rotated box, how would you compute Px?
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CONVEX CONSTRAINTS
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Convex sets through constraints

Let f; : R” — R be convex. Then the level sets
{x eR" : fi(x) < b}
are convex. Therefore, if fy, ..., fx are convex, the set
{xeR": filx)<b i=1,...,k}

is convex. A particular case of convex set defined through
constraints happens when

fi(x)=a;-x aj € R".

We saw how inequalities Ax < b include also equalities,
box-constraints, etc.
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Active constraints

Let us consider the closed convex set
C={x:Ax<b}={x:a-x<b i=1,... Kk}
We say that the i-th constraint is active at a point x € C, when
aj- X = b

and it is inactive when
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A mental exercise

In R?, find feasible closed convex polyhedral sets defined as
C={x:Ax<b}={x:a-x<b i=1,... k}.

and points in the following situations:
@ A feasible point where all constraints are inactive.
@ A feasible point where all constraints are active.

@ A feasible set where it is impossible to have a point with all
constraints inactive.

@ A feasible set where there is a constraint that is always
inactive. (What happens to this constraint?)

@ A feasible set with a constraint that is always active.
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LAGRANGE MULTIPLIERS
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Feasible sets through equality constraints

We consider the set

C = {xeR":fix)=0, i=1,...,s}
= {xeR": Fx)=0} F(x)=(f(x),...,fs(x))".

The standard constraint qualification at x € C is the
condition:

Y yvi(x) =0 = y=0 Vi
i

that is,
{VF£(X),...,Vis(Xx)} is linearly independent,

that is,
rank DF(X) = s.
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Necessary condition for optimality

LetC={xcR": fi(x)=0 i=1,...,s}with f; € C'. Assume
that X is a local minimum of f € C' in C and that the standard
constraint qualification at x holds. Then there exists a vector

¥y € RS such that

VI(X) + ) ¥, VEi(X) =0.
j=1

The components of the vector y are called Lagrange
multipliers.
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Sufficient condition and the Lagrangian

Let (X, y) € R" x RS satisfy:

VIX) + ) ¥, V(X) =0
j=1

fi(X) =0 i=1,...,s

lffandC={xeR": fi(x)=0 i=1,...,s} are convex, then
X is a global minimum of fin C.
The Lagrangian is the function

L(x,y) = f(x +Zy,

The above conditions are equivalent to
VXL(va):O7 VyL(Xa}’):O
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A quadratic example

Minimize
f(x)=3x-Ax—x-b
subject to Bx = c.

@ Vi(x) = Ax — b (if Ais symmetric, which we will assume)

@ fi(x) = b; - x — c;, where b; are the rows of B treated as
colum vectors

® Vfi(x) = b

The Lagrangian is

L(x,y) = %X-Ax—x-b+z Yi(bi-x—¢) = 3x-Ax—x-b+y-(Bx—c)
i
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A quadratic example (2)

L(x,y) = %x-Ax—x-bJrZ Yi(bi-x—¢j) = 3x-Ax—x-b+y-(Bx—c)
i

The Lagrangian equations are:
Ax—b+ yibj=0 — Ax+B'y=»b
i

and
bj-x—c =0 Vi — Bx=c

or as a system
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Checking the conditions

@ The set C = {x : Bx = c} is convex.

@ Constraint qualification: the rank of B is s, that is, B has full
rank by rows

@ Convexity of f. If Ais positive semidefinite, then f is
convex. This is not necessary though, since we only need
f to be convex over C. What is needed is the following

property:
w-Aw >0 for all w satisfying Bw =0
Rmk. In these conditions, the matrix
5% ]
B 0

is symmetric, but it is indefinite.
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KUHN-TUCKER CONDITIONS
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Feasible sets through inequality constraints

Now
C={xeR": fi(x)<0, i=1,...,s}

Given x € C, we define the active and inactive sets:

A(x) = {i: fi(x)=0}
I(x) = {i: f(x)<0}

The standard constraint qualification at x is slightly more
difficult to define:

> yivEi(x)=0 ,
i€ A(x) = yi=0 Vi
yi>0 Vi

For instance, linear independence of groups of gradients of the
constraints that can be active at the same time implies the
result.
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Sufficient conditions

For C' objective function and constraints, if X is a minimum at
which the standard constraint qualification holds, then there
exists a vector y € RS satisfying

VIX) + Y ViVAH(X) =
i=1

yi=z0 Vi
y;=0 i€ Z(x)

Another way of writing this is: there exist y;, i € A(X) such that

+ ) ViV y; > 0.
i€ A(X)
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The Kuhn-Tucker conditions

7,>0 Vi
F(X)<0 Vi
yif(x)=0 Vi

The last group of inequalities are called complementarity
conditions. They mean that for each index i either f;(x) = 0
(active constraint) or y; = 0, so Lagrange multipliers are only
active on active constraints.

These conditions are also known as the Karush-Kuhn-Tucker (KKT)
conditions. KKT+ convexity implies optimality.
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A quadratic example again

The KKT conditions for the problem of minimizing
IX-Ax—x-b  Ais symmetric
subject to Bx < ¢, are
Ax+ BTy = b,

and
y >0, Bx>c yo(Bx-c)=0

where © is the element by element product of two vectors.
Constraint qualification is implied by linear independence of
groups of rows of B such that the planes b; - x = ¢; intersect.
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