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CONVEX FUNCTIONS
ON CONVEX SETS
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Convex sets and convex functions

A set C is convex when

x0, x1 ∈ C =⇒ (1− τ)x0 + τx1 ∈ C ∀τ ∈ (0,1).

We will care about closed convex sets. A function f : C → R is
convex in C when

f ((1−τ)x0+τx1) ≤ (1−τ)f (x0)+τ f (x1), x0, x1 ∈ C, 0 < τ < 1.

(The definition of strict convexity is not repeated.) Note that it
does not make that much sense to talk about convex functions
on non-convex domains (unless they are defined in a larger
convex set). Why?
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A new definition of stationary points

Let f be a C1 function on a convex set C ⊂ Rn. If x ∈ C is a
minimum, then

∇f (x) · (x − x) ≥ 0 ∀x ∈ C.

Proof. Consider the function

[0,1] 3 τ 7→ ϕ(τ) = f (x + τ(x − x)).

Then ϕ has a local minimum at τ = 0 which implies that ϕ′(0) ≥ 0.
This is the condition in the statement.
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A new definition of stationary points (cnt’d)

Let f : Rn → R be a convex C1 function. Then

f (x)− f (x) ≥ ∇f (x) · (x − x) ∀x , x ∈ Rn.

Assume now that x ∈ C (C being a convex set) satisfies

∇f (x) · (x − x) ≥ 0 ∀x ∈ C.

Then x is a global minimum of f in C.
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One result

Let f be a convex function in a convex set C. If x is a local
minimum, it is a global minimum. (Therefore, all local minima
give the same optimal value.)

Proof. Let x ∈ C and take 0 < τ < 1 small enough so that

f (x) ≤ f ((1− τ)x + τx) ≤ (1− τ)f (x) + τ f (x).

(The smallness of τ is used in the first inequality. How?) Simplifying,
it is clear that

f (x) ≤ f (x).
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Another result

Let f be a convex function in a convex set C. The set of all
minima is convex.

Proof. Let x0, x1 be two minima. The previous result shows that

f (x0) = f (x1).

Let then x = (1− τ)x0 + τx1 and note that

f (x0) ≤ f (x) = f ((1− τ)x0 + τx1)

≤ (1− τ)f (x0) + τ f (x1) = f (x0).

Then
f (x0) = f ((1− τ)x0 + τx1) ∀τ ∈ (0,1),

so the points in the segment connecting two minima are also minima.

FJS MATH 612 7 / 30



A consequence

If f is a strictly convex function on a convex set C, then the
minimum of f is either unique or not attained. If the set C is
closed and bounded, then the minimum is attained.
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THE GRADIENT PROJECTION
METHOD
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Ingredients

A closed bounded convex set C
The projection onto the set C. This is a nonlinear
operator P : Rn → C that solves the minimization problem:

Px ∈ C, ‖x − Px‖2 ≤ ‖x − z‖2 ∀z ∈ C.

A convex function f .
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The idea of the algorithm

If we are at the point x , we choose to descend in the gradient
direction w = −∇f (x). It’s likely this will take us outside the
feasible set C. Therefore, instead of doing a line search for the
function

ϕ(t) = f (x + τw)

we do it for
ϕ(t) = f (P(x + τw)).

We will use backtracking. Instead of trying to get

ϕ(τ) < ϕ(0) + βτϕ′(0)

(we might not have a differentiable ϕ because of P), we will
need to modify the right-hand side of this inequality.
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Adapting the backtracking algorithm

Without restrictions, the inequality is

f (x + τw) < f (x) + β∇f (x) · (x + τw − x)

or
f (y) < f (x) + β∇f (x) · (y − x) y = x + τw .

Instead, we do

f (y) < f (x) + β

(
−
‖y − x‖22

τ

)
y = P(x + τw).
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Gradient descent with projection and backtracking

for ν ≥ 1
w = −∇f (x)
ϕ0 = f (x)
τ = γ
y = P(x + τw)
ϕ1 = f (y)
ψ1 = ‖y − x‖2/τ2

while ϕ1 > ϕ0 + τβψ1
τ = τγ
y = P(x + τw)
ϕ1 = f (y)
ψ1 = ‖y − x‖2/τ2

end
x = x + τw
stopping criterion

end
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For you to think...

If C = {x : ‖x − x0‖ ≤ R}, it is easy to compute the
operator P. How?
If C = [a1,b1]× . . .× [an,bn] is a bounded closed box, it is
also easy to find Px . How?
If C is a rotated box, how would you compute Px?
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CONVEX CONSTRAINTS
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Convex sets through constraints

Let fi : Rn → R be convex. Then the level sets

{x ∈ Rn : fi(x) ≤ bi}

are convex. Therefore, if f1, . . . , fk are convex, the set

{x ∈ Rn : fi(x) ≤ bi i = 1, . . . , k}

is convex. A particular case of convex set defined through
constraints happens when

fi(x) = ai · x ai ∈ Rn.

We saw how inequalities Ax ≤ b include also equalities,
box-constraints, etc.
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Active constraints

Let us consider the closed convex set

C = {x : Ax ≤ b} = {x : ai · x ≤ bi i = 1, . . . , k}.

We say that the i-th constraint is active at a point x ∈ C, when

ai · x = bi

and it is inactive when

ai · x < bi .
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A mental exercise

In R2, find feasible closed convex polyhedral sets defined as

C = {x : Ax ≤ b} = {x : ai · x ≤ bi i = 1, . . . , k}.

and points in the following situations:
A feasible point where all constraints are inactive.
A feasible point where all constraints are active.
A feasible set where it is impossible to have a point with all
constraints inactive.
A feasible set where there is a constraint that is always
inactive. (What happens to this constraint?)
A feasible set with a constraint that is always active.
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LAGRANGE MULTIPLIERS
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Feasible sets through equality constraints

We consider the set

C = {x ∈ Rn : fi(x) = 0, i = 1, . . . , s}
= {x ∈ Rn : F (x) = 0} F (x) = (f1(x), . . . , fs(x))T .

The standard constraint qualification at x ∈ C is the
condition: ∑

i

yi∇fi(x) = 0 =⇒ yi = 0 ∀i ,

that is,

{∇f1(x), . . . ,∇fs(x)} is linearly independent,

that is,
rank DF (x) = s.
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Necessary condition for optimality

Let C = {x ∈ Rn : fi(x) = 0 i = 1, . . . , s} with fi ∈ C1. Assume
that x is a local minimum of f ∈ C1 in C and that the standard
constraint qualification at x holds. Then there exists a vector
y ∈ Rs such that

∇f (x) +
s∑

j=1

y j∇fj(x) = 0.

The components of the vector y are called Lagrange
multipliers.
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Sufficient condition and the Lagrangian

Let (x , y) ∈ Rn × Rs satisfy:

∇f (x) +
s∑

j=1

y j∇fj(x) = 0

fi(x) = 0 i = 1, . . . , s.

If f and C = {x ∈ Rn : fi(x) = 0 i = 1, . . . , s} are convex, then
x is a global minimum of f in C.
The Lagrangian is the function

L(x , y) = f (x) +
s∑

i=1

yi fi(x).

The above conditions are equivalent to

∇xL(x , y) = 0, ∇yL(x , y) = 0.
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A quadratic example

Minimize
f (x) = 1

2x · Ax − x · b

subject to Bx = c.

∇f (x) = Ax − b (if A is symmetric, which we will assume)
fi(x) = bi · x − ci , where bi are the rows of B treated as
colum vectors
∇fi(x) = bi

The Lagrangian is

L(x , y) = 1
2x ·Ax−x ·b+

∑
i

yi(bi ·x−ci) =
1
2x ·Ax−x ·b+y ·(Bx−c)
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A quadratic example (2)

L(x , y) = 1
2x ·Ax−x ·b+

∑
i

yi(bi ·x−ci) =
1
2x ·Ax−x ·b+y ·(Bx−c)

The Lagrangian equations are:

Ax − b +
∑

i

yibi = 0 ⇐⇒ Ax + BT y = b

and
bi · x − ci = 0 ∀i ⇐⇒ Bx = c

or as a system [
A BT

B 0

] [
x
y

]
=

[
b
c

]
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Checking the conditions

The set C = {x : Bx = c} is convex.
Constraint qualification: the rank of B is s, that is, B has full
rank by rows
Convexity of f . If A is positive semidefinite, then f is
convex. This is not necessary though, since we only need
f to be convex over C. What is needed is the following
property:

w · Aw ≥ 0 for all w satisfying Bw = 0

Rmk. In these conditions, the matrix[
A BT

B 0

]
is symmetric, but it is indefinite.
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KUHN-TUCKER CONDITIONS
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Feasible sets through inequality constraints

Now
C = {x ∈ Rn : fi(x) ≤ 0, i = 1, . . . , s}

Given x ∈ C, we define the active and inactive sets:

A(x) = {i : fi(x) = 0}
I(x) = {i : fi(x) < 0}

The standard constraint qualification at x is slightly more
difficult to define:∑

i∈A(x)

yi∇fi(x) = 0

yi ≥ 0 ∀i

 =⇒ yi = 0 ∀i

For instance, linear independence of groups of gradients of the
constraints that can be active at the same time implies the
result.
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Sufficient conditions

For C1 objective function and constraints, if x is a minimum at
which the standard constraint qualification holds, then there
exists a vector y ∈ Rs satisfying

∇f (x) +
s∑

i=1

y i∇fi(x) = 0

y i ≥ 0 ∀i
y i = 0 i ∈ I(x)

Another way of writing this is: there exist y i , i ∈ A(x) such that

∇f (x) +
∑

i∈A(x)

y i∇fi(x) = 0, y i ≥ 0.
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The Kuhn-Tucker conditions

∇f (x) +
∑

i

y i∇fi(x) = 0

y i ≥ 0 ∀i
fi(x) ≤ 0 ∀i

y i fi(x) = 0 ∀i

The last group of inequalities are called complementarity
conditions. They mean that for each index i either fi(x) = 0
(active constraint) or y i = 0, so Lagrange multipliers are only
active on active constraints.

These conditions are also known as the Karush-Kuhn-Tucker (KKT)
conditions. KKT+ convexity implies optimality.
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A quadratic example again

The KKT conditions for the problem of minimizing

1
2x · Ax − x · b A is symmetric

subject to Bx ≤ c, are

Ax + BT y = b,

and
y ≥ 0, Bx ≥ c y � (Bx − c) = 0

where � is the element by element product of two vectors.
Constraint qualification is implied by linear independence of
groups of rows of B such that the planes bi · x = ci intersect.
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