MATH 612

Computational methods for equation solving and function minimization - Week \# 13

F.J.S.

Spring 2014 - University of Delaware

CONVEX FUNCTIONS ON CONVEX SETS

Convex sets and convex functions

A set C is convex when

$$
x_{0}, x_{1} \in C \quad \Longrightarrow \quad(1-\tau) x_{0}+\tau x_{1} \in C \quad \forall \tau \in(0,1)
$$

We will care about closed convex sets. A function $f: C \rightarrow \mathbb{R}$ is convex in C when

$$
f\left((1-\tau) x_{0}+\tau x_{1}\right) \leq(1-\tau) f\left(x_{0}\right)+\tau f\left(x_{1}\right), \quad x_{0}, x_{1} \in C, \quad 0<\tau<1 .
$$

(The definition of strict convexity is not repeated.) Note that it does not make that much sense to talk about convex functions on non-convex domains (unless they are defined in a larger convex set). Why?

A new definition of stationary points

Let f be a \mathcal{C}^{1} function on a convex set $C \subset \mathbb{R}^{n}$. If $\bar{x} \in C$ is a minimum, then

$$
\nabla f(\bar{x}) \cdot(x-\bar{x}) \geq 0 \quad \forall x \in C .
$$

Proof. Consider the function

$$
[0,1] \ni \tau \mapsto \varphi(\tau)=f(\bar{x}+\tau(x-\bar{x})) .
$$

Then φ has a local minimum at $\tau=0$ which implies that $\varphi^{\prime}(0) \geq 0$. This is the condition in the statement.

A new definition of stationary points (cnt'd)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex \mathcal{C}^{1} function. Then

$$
f(x)-f(\bar{x}) \geq \nabla f(\bar{x}) \cdot(x-\bar{x}) \quad \forall x, \bar{x} \in \mathbb{R}^{n} .
$$

Assume now that $\bar{x} \in C$ (C being a convex set) satisfies

$$
\nabla f(\bar{x}) \cdot(x-\bar{x}) \geq 0 \quad \forall x \in C .
$$

Then \bar{x} is a global minimum of f in C.

Let f be a convex function in a convex set C. If \bar{x} is a local minimum, it is a global minimum. (Therefore, all local minima give the same optimal value.)

Proof. Let $x \in C$ and take $0<\tau<1$ small enough so that

$$
f(\bar{x}) \leq f((1-\tau) \bar{x}+\tau x) \leq(1-\tau) f(\bar{x})+\tau f(x) .
$$

(The smallness of τ is used in the first inequality. How?) Simplifying, it is clear that

$$
f(\bar{x}) \leq f(x)
$$

Another result

Let f be a convex function in a convex set C. The set of all minima is convex.

Proof. Let x_{0}, x_{1} be two minima. The previous result shows that

$$
f\left(x_{0}\right)=f\left(x_{1}\right) .
$$

Let then $x=(1-\tau) x_{0}+\tau x_{1}$ and note that

$$
\begin{aligned}
f\left(x_{0}\right) & \leq f(x)=f\left((1-\tau) x_{0}+\tau x_{1}\right) \\
& \leq(1-\tau) f\left(x_{0}\right)+\tau f\left(x_{1}\right)=f\left(x_{0}\right)
\end{aligned}
$$

Then

$$
f\left(x_{0}\right)=f\left((1-\tau) x_{0}+\tau x_{1}\right) \quad \forall \tau \in(0,1),
$$

so the points in the segment connecting two minima are also minima.

A consequence

If f is a strictly convex function on a convex set C, then the minimum of f is either unique or not attained. If the set C is closed and bounded, then the minimum is attained.

THE GRADIENT PROJECTION METHOD

Ingredients

- A closed bounded convex set C
- The projection onto the set C. This is a nonlinear operator $\mathcal{P}: \mathbb{R}^{n} \rightarrow C$ that solves the minimization problem:

$$
\mathcal{P} x \in C, \quad\|x-\mathcal{P} x\|_{2} \leq\|x-z\|_{2} \quad \forall z \in C
$$

- A convex function f.

If we are at the point x, we choose to descend in the gradient direction $w=-\nabla f(x)$. It's likely this will take us outside the feasible set C. Therefore, instead of doing a line search for the function

$$
\varphi(t)=f(x+\tau w)
$$

we do it for

$$
\varphi(t)=f(\mathcal{P}(x+\tau w))
$$

We will use backtracking. Instead of trying to get

$$
\varphi(\tau)<\varphi(0)+\beta \tau \varphi^{\prime}(0)
$$

(we might not have a differentiable φ because of \mathcal{P}), we will need to modify the right-hand side of this inequality.

Adapting the backtracking algorithm

Without restrictions, the inequality is

$$
f(x+\tau w)<f(x)+\beta \nabla f(x) \cdot(x+\tau w-x)
$$

or

$$
f(y)<f(x)+\beta \nabla f(x) \cdot(y-x) \quad y=x+\tau w
$$

Instead, we do

$$
f(y)<f(x)+\beta\left(-\frac{\|y-x\|_{2}^{2}}{\tau}\right) \quad y=\mathcal{P}(x+\tau w)
$$

Gradient descent with projection and backtracking

```
for }\nu\geq
    w=-\nablaf(x)
    \varphi
    \tau=\gamma
    y=\mathcal{P}(x+\tauw)
    \varphi}=f(y
    \psi}=|y-x\mp@subsup{|}{}{2}/\mp@subsup{\tau}{}{2
    while }\mp@subsup{\varphi}{1}{}>\mp@subsup{\varphi}{0}{}+\tau\beta\mp@subsup{\psi}{1}{
\[
\tau=\tau \gamma
\]
\[
y=\mathcal{P}(x+\tau w)
\]
\[
\varphi_{1}=f(y)
\]
\[
\psi_{1}=\|y-x\|^{2} / \tau^{2}
\]
end
\(x=x+\tau W\)
stopping criterion
- If \(C=\left\{x:\left\|x-x_{0}\right\| \leq R\right\}\), it is easy to compute the operator \(\mathcal{P}\). How?
- If \(C=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]\) is a bounded closed box, it is also easy to find \(\mathcal{P} x\). How?
- If \(C\) is a rotated box, how would you compute \(\mathcal{P} x\) ?

\section*{CONVEX CONSTRAINTS}

\section*{Convex sets through constraints}

Let \(f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}\) be convex. Then the level sets
\[
\left\{x \in \mathbb{R}^{n}: f_{i}(x) \leq b_{i}\right\}
\]
are convex. Therefore, if \(f_{1}, \ldots, f_{k}\) are convex, the set
\[
\left\{x \in \mathbb{R}^{n}: f_{i}(x) \leq b_{i} \quad i=1, \ldots, k\right\}
\]
is convex. A particular case of convex set defined through constraints happens when
\[
f_{i}(x)=a_{i} \cdot x \quad a_{i} \in \mathbb{R}^{n}
\]

We saw how inequalities \(A x \leq b\) include also equalities, box-constraints, etc.

\section*{Active constraints}

Let us consider the closed convex set
\[
C=\{x: A x \leq b\}=\left\{x: a_{i} \cdot x \leq b_{i} \quad i=1, \ldots, k\right\} .
\]

We say that the \(i\)-th constraint is active at a point \(\bar{x} \in C\), when
\[
a_{i} \cdot \bar{x}=b_{i}
\]
and it is inactive when
\[
a_{i} \cdot \bar{x}<b_{i}
\]

\section*{A mental exercise}

In \(\mathbb{R}^{2}\), find feasible closed convex polyhedral sets defined as
\[
C=\{x: A x \leq b\}=\left\{x: a_{i} \cdot x \leq b_{i} \quad i=1, \ldots, k\right\}
\]
and points in the following situations:
- A feasible point where all constraints are inactive.
- A feasible point where all constraints are active.
- A feasible set where it is impossible to have a point with all constraints inactive.
- A feasible set where there is a constraint that is always inactive. (What happens to this constraint?)
- A feasible set with a constraint that is always active.

\section*{LAGRANGE MULTIPLIERS}

We consider the set
\[
\begin{aligned}
C & =\left\{x \in \mathbb{R}^{n}: f_{i}(x)=0, \quad i=1, \ldots, s\right\} \\
& =\left\{x \in \mathbb{R}^{n}: F(x)=0\right\} \quad F(x)=\left(f_{1}(x), \ldots, f_{s}(x)\right)^{T} .
\end{aligned}
\]

The standard constraint qualification at \(\bar{x} \in C\) is the condition:
\[
\sum_{i} y_{i} \nabla f_{i}(\bar{x})=0 \quad \Longrightarrow \quad y_{i}=0 \quad \forall i,
\]
that is,
\(\left\{\nabla f_{1}(\bar{x}), \ldots, \nabla f_{s}(\bar{x})\right\}\) is linearly independent, that is,
\[
\operatorname{rank} D F(\bar{x})=s
\]

\section*{Necessary condition for optimality}

Let \(C=\left\{x \in \mathbb{R}^{n}: f_{i}(x)=0 \quad i=1, \ldots, s\right\}\) with \(f_{i} \in \mathcal{C}^{1}\). Assume that \(\bar{x}\) is a local minimum of \(f \in \mathcal{C}^{1}\) in \(C\) and that the standard constraint qualification at \(\bar{x}\) holds. Then there exists a vector \(\bar{y} \in \mathbb{R}^{s}\) such that
\[
\nabla f(\bar{x})+\sum_{j=1}^{s} \bar{y}_{j} \nabla f_{j}(\bar{x})=0
\]

The components of the vector \(\bar{y}\) are called Lagrange multipliers.

\section*{Sufficient condition and the Lagrangian}

Let \((\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{s}\) satisfy:
\[
\begin{aligned}
\nabla f(\bar{x})+\sum_{j=1}^{s} \bar{y}_{j} \nabla f_{j}(\bar{x}) & =0 \\
f_{i}(\bar{x}) & =0 \quad i=1, \ldots, s .
\end{aligned}
\]

If \(f\) and \(C=\left\{x \in \mathbb{R}^{n}: f_{i}(x)=0 \quad i=1, \ldots, s\right\}\) are convex, then \(\bar{x}\) is a global minimum of \(f\) in \(C\).
The Lagrangian is the function
\[
L(x, y)=f(x)+\sum_{i=1}^{s} y_{i} f_{i}(x)
\]

The above conditions are equivalent to
\[
\nabla_{x} L(x, y)=0, \quad \nabla_{y} L(x, y)=0
\]

\section*{A quadratic example}

Minimize
\[
f(x)=\frac{1}{2} x \cdot A x-x \cdot b
\]
subject to \(B x=c\).
- \(\nabla f(x)=A x-b\) (if \(A\) is symmetric, which we will assume)
- \(f_{i}(x)=b_{i} \cdot x-c_{i}\), where \(b_{i}\) are the rows of \(B\) treated as colum vectors
- \(\nabla f_{i}(x)=b_{i}\)

The Lagrangian is
\(L(x, y)=\frac{1}{2} x \cdot A x-x \cdot b+\sum_{i} y_{i}\left(b_{i} \cdot x-c_{i}\right)=\frac{1}{2} x \cdot A x-x \cdot b+y \cdot(B x-c)\)

\section*{A quadratic example (2)}
\(L(x, y)=\frac{1}{2} x \cdot A x-x \cdot b+\sum_{i} y_{i}\left(b_{i} \cdot x-c_{i}\right)=\frac{1}{2} x \cdot A x-x \cdot b+y \cdot(B x-c)\)
The Lagrangian equations are:
\[
A x-b+\sum_{i} y_{i} b_{i}=0 \quad \Longleftrightarrow \quad A x+B^{T} y=b
\]
and
\[
b_{i} \cdot x-c_{i}=0 \quad \forall i \quad \Longleftrightarrow \quad B x=c
\]
or as a system
\[
\left[\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
b \\
c
\end{array}\right]
\]

\section*{Checking the conditions}
- The set \(C=\{x: B x=c\}\) is convex.
- Constraint qualification: the rank of \(B\) is \(s\), that is, \(B\) has full rank by rows
- Convexity of \(f\). If \(A\) is positive semidefinite, then \(f\) is convex. This is not necessary though, since we only need \(f\) to be convex over \(C\). What is needed is the following property:
\[
w \cdot A w \geq 0 \quad \text { for all } w \text { satisfying } B w=0
\]

Rmk. In these conditions, the matrix
\[
\left[\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right]
\]
is symmetric, but it is indefinite.

\section*{KUHN-TUCKER CONDITIONS}

\section*{Feasible sets through inequality constraints}

Now
\[
C=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \leq 0, \quad i=1, \ldots, s\right\}
\]

Given \(x \in C\), we define the active and inactive sets:
\[
\begin{aligned}
\mathcal{A}(x) & =\left\{i: f_{i}(x)=0\right\} \\
\mathcal{I}(x) & =\left\{i: f_{i}(x)<0\right\}
\end{aligned}
\]

The standard constraint qualification at \(x\) is slightly more difficult to define:
\[
\left.\begin{array}{c}
\sum_{i \in \mathcal{A}(x)} y_{i} \nabla f_{i}(x)=0 \\
y_{i} \geq 0 \quad \forall i
\end{array}\right\} \quad \Longrightarrow \quad y_{i}=0 \quad \forall i
\]

For instance, linear independence of groups of gradients of the constraints that can be active at the same time implies the result.

\section*{Sufficient conditions}

For \(\mathcal{C}^{1}\) objective function and constraints, if \(\bar{x}\) is a minimum at which the standard constraint qualification holds, then there exists a vector \(\bar{y} \in \mathbb{R}^{s}\) satisfying
\[
\begin{aligned}
\nabla f(\bar{x})+\sum_{i=1}^{s} \bar{y}_{i} \nabla f_{i}(\bar{x}) & =0 & & \\
\bar{y}_{i} & \geq 0 & & \forall i \\
\bar{y}_{i} & =0 & & i \in \mathcal{I}(\bar{x})
\end{aligned}
\]

Another way of writing this is: there exist \(\bar{y}_{i}, i \in \mathcal{A}(\bar{x})\) such that
\[
\nabla f(\bar{x})+\sum_{i \in \mathcal{A}(\bar{x})} \bar{y}_{i} \nabla f_{i}(\bar{x})=0, \quad \bar{y}_{i} \geq 0 .
\]
\[
\begin{aligned}
\nabla f(\bar{x})+\sum_{i} \bar{y}_{i} \nabla f_{i}(\bar{x}) & =0 & & \\
\bar{y}_{i} & \geq 0 & & \forall i \\
f_{i}(\bar{x}) & \leq 0 & & \forall i \\
\bar{y}_{i} f_{i}(\bar{x}) & =0 & & \forall i
\end{aligned}
\]

The last group of inequalities are called complementarity conditions. They mean that for each index \(i\) either \(f_{i}(\bar{x})=0\) (active constraint) or \(\bar{y}_{i}=0\), so Lagrange multipliers are only active on active constraints.

These conditions are also known as the Karush-Kuhn-Tucker (KKT) conditions. KKT+ convexity implies optimality.

\section*{A quadratic example again}

The KKT conditions for the problem of minimizing
\[
\frac{1}{2} x \cdot A x-x \cdot b \quad A \text { is symmetric }
\]
subject to \(B x \leq c\), are
\[
A x+B^{T} y=b
\]
and
\[
y \geq 0, \quad B x \geq c \quad y \odot(B x-c)=0
\]
where \(\odot\) is the element by element product of two vectors.
Constraint qualification is implied by linear independence of groups of rows of \(B\) such that the planes \(b_{i} \cdot x=c_{i}\) intersect.```

