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Plan for this week

Discuss any problems you couldn’t solve of Lectures 1 and
2 (Lectures are the chapters of the book)
Read Lectures 3, 4, and 5
I will talk about Lectures 3, 4, and 5, but will not cover
everything in the book, and especially, not in the same
order. I will respect notation though.
The first HW assignment will be given. It includes problems
from Lectures 1–4.

Warning

Typically, I’ll keep on updating, correcting, and modifying the
slides until the end of each week.
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NORMS
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Norms for vectors

A norm in Cn is a map ‖ · ‖ : Cn → R satisfying
Positivity: ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0
The triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖
Homogeneity: ‖αx‖ = |α| ‖x‖

These properties hold for arbitrary x , y ∈ Cn and α ∈ C.

Important examples

‖x‖p =
( n∑

j=1

|xj |p
)1/p

1 ≤ p <∞, ‖x‖∞ = max
j=1,...,n

|xj |.

The values p = 1 and p = 2 are the most commonly used.
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Other norms

If W is an invertible matrix, then

‖Wx‖p 1 ≤ p ≤ ∞

are also norms (W as in weight). Think for instance of a
diagonal matrix W = diag(w1, . . . ,wn) and p = 2

( n∑
j=1

|wj |2|xj |2
)1/2

,

and with p = 1
n∑

j=1

|wj ||xj |.
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Several MATLAB formulas

To compute the 2-norm you can use all of these strategies:

>> x=[3 1 2 5 6]’; % column vector
>> sqrt(sum(abs(x).^2))
ans =

8.660254037844387
>> sqrt(dot(x,x)); % results ommited
>> sqrt(x’*x); % only works if x is a column vector
>> norm(x,2);
>> norm(x); % the 2-norm is the default norm

P.S.
If there’s a Matlab function for something, use it (unless
instructed to DIY)
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Continues...

>> x=[3 1 2 5 6]’; % column vector
>> sum(abs(x))
ans =

17
>> norm(x,1)
ans =

17
>> max(abs(x))
ans =

6
>> norm(x,Inf)
ans =

6

A three line experiment
Find numerical evidence (using a single vector) that the
p−norm of a vector is a continuous function of the parameter p
with correct limit as p →∞.
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The shape of the p-balls

The sets
{x ∈ R2 : ‖x‖p ≤ 1}

have very different shapes for p = 2 (circle), p =∞ (square
parallel to the axes) p = 1 (square parallel to the main
diagonals).

Note that
‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.

(Can you prove this? Can you see why this proves that for the
same radius, the∞ balls are larger than the 2 balls, and both
are larger than the 1 balls?)
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Operator (or induced) norms for matrices

For any A ∈ Cm,n and arbitrary p we can define the norm

‖A‖(p) = sup
06=x∈Cn

‖Ax‖p
‖x‖p

= sup
x∈Cn,‖x‖p=1

‖Ax‖p.

(The supremum is actually a maximum.) These are actually
norms valid in the spaces of matrices for all sizes. They
additionally satisfy:

1 By definition... ‖Ax‖p ≤ ‖A‖(p)‖x‖p
2 By a simple argument... ‖AB‖(p) ≤ ‖A‖(p)‖B‖(p)
3 By a simpler argument... ‖I‖(p) = 1.

The Frobenius norm

‖A‖F =
( m∑

i=1

n∑
j=1

|aij |2
)1/2

=
√

trace(A∗A)

satisfies the second property but not the third.
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Computing the norms

The Frobenius norm is easy to compute (it’s just a formula).
There are formulas for ‖A‖(1) and ‖A‖(∞). The computation of
‖A‖(2) will be shown later this week. (It requires computing one
eigenvalue.)
Formulas (the proofs are in the book)

‖A‖(1) = max
j
‖aj‖1 where aj are the columns of A

‖A‖(∞) = max
i
‖a∗i ‖1 where a∗i are the rows of A

Note that
‖A‖(∞) = ‖A∗‖(1)
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More Matlab...

>> A=[-1 -2 3;4 -5 6]
A =

-1 -2 3
4 -5 6

>> norm(A,1)
ans =

9
>> max(sum(abs(A))) % sum adds by columns (default)
ans =

9
>> norm(A,Inf)
ans =

15
>> max(sum(abs(A’)))
ans =

15
>> max(sum(abs(A),2))
ans =

15
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Now you think

Prove that if Q is a unitary, then

‖Q A‖F = ‖A‖F and ‖Q A‖(2) = ‖A‖(2)

What is ‖I‖F ? (Hint. It depends on the dimension.)
What is computed with the following Matlab line?
sum(abs(A(:).^2))

More importantly, how?
Figure out what is the Matlab command for the Frobenius
norm of a matrix.
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The SVD
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Important announcement

This is one of the most important concepts in mathematics you
will ever learn. It is used with different names in all kinds of
areas of mathematics, signal processing, statistics,...

SVD stands for singular value decomposition

This lecture is quite theoretical. You’ll need to be patient and
alert!
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The matrix A∗A

Let A be a complex m × n matrix. Consider the n × n matrix
A∗A.

It is Hermitian ((A∗A)∗ = A∗A). Therefore its eigenvalues
are real, it is diagonalizable, and its eigenvectors can be
made build an orthonormal basis of Cn (Rn if A is real).
It is positive semidefinite:

x∗(A∗Ax) = (x∗A∗)(Ax) = (Ax)∗(Ax) = ‖Ax‖2 ≥ 0 ∀x ∈ Cn.

Therefore its eigenvalues are non-negative (real) numbers.
Its nullspace is the same as the one for A:

Ax = 0 ⇐⇒ A∗Ax = 0.

(See the previous item for the proof.) Therefore, by the
rank-nullity theorem A∗A has the same rank as A.
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Applying the spectral theorem

We organize the eigenvalues of A∗A in decreasing order:

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
r > σ2

r+1 = . . . = σ2
n = 0.

We choose an orthonormal basis of eigenvectors

A∗Avj = σ2
j vj null(A) = nul(A∗A) = 〈vr+1, . . . , vn〉.

We then consider the following vectors

uj =
1
σj

Avj , j = 1, . . . , r .
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Elementary, my dear Watson

The vectors uj are orthonormal

u∗i uj =
( 1
σi

Avi

)∗( 1
σj

Avj

)
=

1
σiσj

v∗i A∗Avj

=
σ2

j

σiσj
v∗i vj = δij

and they span the range of A. Moreover, for all x

Ax = A
( n∑

j=1

(v∗j x)vj︸ ︷︷ ︸
=x

)
=

n∑
j=1

(v∗j x)Avj

=
r∑

j=1

(v∗j x)σjuj =
r∑

j=1

σj(v∗j x)uj .
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The reduced SVD

The reduced SVD is the matrix form of the equality

Ax =
r∑

j=1

σj(v∗j x)uj .

A = ÛΣ̂V̂ ∗

V̂ is the n × r matrix whose columns are the orthonormal
vectors {v1, . . . , vr}.
Σ̂ is the r × r diagonal matrix whose diagonal entries are
the positive numbers

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

Û is the m × r matrix whose columns are the orthonormal
vectors {u1, . . . ,ur}.

FJS MATH 612 18 / 38



Terminology

Ax =
r∑

j=1

σj(v∗j x)uj A = ÛΣ̂V̂ ∗

The numbers

σ1 ≥ σ2 ≥ . . . ≥ σr > 0 r is the rank of A

are the singular values of A.
The orthonormal vectors {v1, . . . , vr} are the right singular
vectors. (They are the eigenvectors of A∗A except those
corresponding to the zero eigenvalue.)
The orthonormal vectors {u1, . . . ,ur} are the left singular
vectors.
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Bear with me

There’s a lot of information encoded in this expressions:

Ax =
r∑

j=1

σj(v∗j x)uj A = ÛΣ̂V̂ ∗.

Forget how we got it. Assume that we have just been told that
the SVD exists. (Remember the rules on the three matrices.)
Then:

A∗y =
r∑

j=1

σj(u∗j y)vj A∗ = V̂ Σ̂Û∗.

A∗Ax =
r∑

j=1

σ2
j (v∗j x)vj A∗A = V̂ Σ̂2V̂ ∗

AA∗y =
r∑

j=1

σ2
j (u∗j y)uj AA∗ = ÛΣ̂2Û∗
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All of this is true: prove it

Let
A = ÛΣ̂V̂ ∗

where the column vectors of Û and V̂ are orthonormal, and
where Σ̂ is an r × r positive diagonal matrix with entires of
non-increasing order. Then:

A∗Avj = σ2
j vj , AA∗uj = σ2

j uj ,

Avj = σjuj , A∗uj = σjvj ,

the rank of A is r and

〈v1, . . . , vr 〉 = null(A)⊥ = range(A∗)

〈u1, . . . ,ur 〉 = range(A) = null(A∗)⊥.
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A geometric/information approach

Let A be an n × n real invertible matrix, with SVD1

A = UΣV ∗

By construction, the matrices U and V are unitary and can be
taken to be real.
Let x ∈ Rn be such that

‖x‖22 = 1 = x2
1 + . . .+ x2

n .

We then decompose (c = V ∗x)

x = c1v1 + . . .+ cnvn = (v∗1 x)v1 + . . .+ (v∗n x)vn,

where
‖c‖22 = c2

1 + . . .+ c2
n = 1.

1we eliminate the hats, because in this case the reduced SVD is equal to
the full SVD
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A geometric/information approach (2)

Then

Ax = σ1c1u1 + . . .+ σncnun = y1u1 + . . .+ ynun,

where (
y1

σ1

)2

+ . . .+

(
yn

σn

)2

= 1.

In other words...

Let A be an invertible matrix with singular values

σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

Then there exists an orthogonal reference frame in Rn such
that the image of the unit ball by A is the hyperellipsoid(

y1

σ1

)2

+ . . .+

(
yn

σn

)2

= 1.
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The 2-norm of a matrix

We go back to the genera case

Ax =
r∑

j=1

σj(v∗j x)uj A = ÛΣ̂V̂ ∗.

Then

‖Ax‖22 =
r∑

j=1

σ2
j |(v∗j x)|2 ≤ σ2

1

r∑
j=1

|(v∗j x)|2 (σ1 ≥ σj ∀j)

≤ σ2
1

n∑
j=1

|(v∗j x)|2 = σ2
1‖x‖22

This proves (how?) that

‖A‖(2) = sup
06=x∈Cn

‖Ax‖2
‖x‖2

= σ1 = max singular value
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The full SVD

Again, for a general m × n matrix A,...

Ax =
r∑

j=1

σj(v∗j x)uj A = ÛΣ̂V̂ ∗.

Now:
Build an orthonormal basis of Cn, {v1, . . . , vr , vr+1, . . . , vn}
by completing the right singular vectors with orthonormal
vectors (from null(A)).
Build an orthonormal basis of Cm,
{u1, . . . ,ur ,ur+1, . . . ,um} by completing the left singular
vectors with orthonormal vectors (from null(A∗)).

This is the same as adding n − r columns to the right of V̂ and
m − r columns to the right of Û making the resulting matrices
(V and U) unitary.

FJS MATH 612 25 / 38



The full SVD (2)

We then create an m × n matrix (same size as A)

Σ =

[
Σ̂ 0
0 0

]
by adding n − r columns to the right and m − r rows to the
bottom of Σ̂. It is simple to see that

A = UΣV ∗ = ÛΣ̂V̂ ∗.

Note sizes in the reduced decomposition

(m × r)(r × r)(r × n)

and in the full decomposition

(m ×m)(m × n)(n × n)
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The pseudoinverse
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Recall the reduced SVD

Every m × n matrix A can be decomposed in the form

A = ÛΣ̂V̂ ∗

Û is m × r with orthonormal columns
Σ̂ is r × r diagonal with positive entries

σ1 ≥ σ2 ≥ . . . ≥ σr > 0

V̂ is n × r with orthonormal columns

The MATLAB command [U,S,V]=svd(A) returns the full
SVD.
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The (Moore-Penrose) pseudoinverse

If
A = ÛΣ̂V̂ ∗

we define
A+ = V̂ Σ̂−1Û∗.

Note the following:
If A is invertible, then A+ = A−1. Why?
For a general matrix A

x = A+b =⇒ A∗Ax = A∗b

(we’ll talk about least-squares in due time)
If Ax = b has a unique solution (A has full rank by columns
and b is in the range of A), then x = A+b.
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Wasting our time?

Let

A =

[
1 1 1
1 1 1

]
Can we compute its SVD? Can we do it without going through
the diagonalization of A∗A?

A∗A =

 2 2 2
2 2 2
2 2 2


Note that A has rank one. This is good news because Σ̂ is a
1× 1 matrix. Now we cheat!
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Wasting our time? (2)

First...

null(A) =

〈 1
−1
0

 ,
 1

0
−1

〉

so we can choose

V̂ =

 1/
√

3
1/
√

3
1/
√

3

 .
Then

σ1u1 = Av1, ‖u1‖2 = 1,

which gives

Û =

[
1/
√

2
1/
√

2

]
, Σ̂ =

[ √
6
]
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Wasting our time? (... and 3)

This is the reduced SVD[
1 1 1
1 1 1

]
=

[
1/
√

2
1/
√

2

] [ √
6
] [

1/
√

3 1/
√

3 1/
√

3
]

and this is the pseudoinverse

A+ =

 1/
√

3
1/
√

3
1/
√

3

 [ 1/
√

6
] [

1/
√

2 1/
√

2
]

=

 1/6 1/6
1/6 1/6
1/6 1/6



Matlab computes the pseudoinverse with the command pinv

You have a couple ol little challenging SVD to compute by hand
in the book.

Fast now! Give me another SVD for A
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Low-rank approximation
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Ways to look at the SVD

The SVD

A = ÛΣ̂V̂ ∗ Σ̂ =

 σ1
. . .

σr


can be read as

A =
r∑

j=1

σjujv∗j .

Follow me now... We have written A, which is a matrix of rank r ,
as the sum of r matrices of rank 1. (Careful with this: if you add
matrices of rank one you might end up with a matrix of less
rank. The orthogonality of the vectors plays a key role here.)
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A compressed version of A

Let

Ak :=
k∑

j=1

σjujv∗j = Ûk Σ̂k V̂ ∗k .

Then Ak is a matrix of rank k . Its first k singular values, left
singular vectors and right singular vectors coincide with those
of A.
Now this is quite surprising...

A− Ak =
r∑

j=k+1

σjujv∗j ,

so the singular values of A− Ak are

σk+1 ≥ . . . ≥ σr

and ‖A− Ak‖(2) = σk+1.
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The low-rank approximation

In the book you have a proof (not complicated) of the following
fact:

If B has rank k < r , then

‖A− B‖(2) ≥ σk+1,

so we have found the best approximation of A in spectral norm
‖ · ‖(2) by matrices of rank k or less.

Now you are going to code this.
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What to do

Create a function

B=lowrank(A,R)

such that given any matrix A and a number 0 < R < 1 (a rate),
computes its SVD (let Matlab do this, but remember that
you get the full SVD)
finds the lowest k such that

σ2
1 + . . .+ σ2

k ≥ R (σ2
1 + . . .+ σ2

r )

then compresses A to rank k
For the code, it might be convenient to create a vector with the
squares of the diagonal elements of Σ.
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Sneak peek

Compute the full SVD of A (U, Σ, V )
D = vector with the square of the diagonal of Σ
energy=sum of elements of D
c=0;
for k = 1 : length of D

c = c + D(k)
if c ≥ R × energy

leave the loop
end

end
keep the first k columns of U
keep the first columns of V
keep the upper k × k block of Σ
build the low rank approximation
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