MATH 612
 Computational methods for equation solving and function minimization - Week \# 3

Instructor: Francisco-Javier 'Pancho' Sayas

Spring 2014 - University of Delaware

Plan for this week

- Discuss any problems you couldn't solve of Lectures 3 to 5 (Lectures are the chapters of the book)
- Read Lectures 6 and 7
- Homework is due Wednesday at class time
- The first coding assignment will be posted at the end of the week
- Friday is a work'n'code day. You'll be given some problems to work on and a small coding assignment.

Warning

Typically, l'll keep on updating, correcting, and modifying the slides until the end of each week.

ORTHOGONAL PROJECTIONS

Orthogonal decomposition

Consider an orthonormal basis of \mathbb{C}^{m} (or \mathbb{R}^{m})

$$
\underbrace{q_{1}, \ldots, q_{n}}, \underbrace{q_{n+1}, \ldots, q_{m}} . \quad\left(S_{1} \perp S_{2}\right)
$$

basis of S_{1} basis of S_{2}
Given a vector x the vector

$$
\sum_{j=1}^{n}\left(q_{j}^{*} x\right) q_{j}=\left(\sum_{j=1}^{n} q_{j} q_{j}^{*}\right) x=P x
$$

is in S_{1} and $x-P x$ is in the orthogonal complement of S_{1}. In other words, the decomposition

$$
x=P x+(I-P) x
$$

is orthogonal.

The orthogonal projector

Starting again: given orthonormal vectors q_{1}, \ldots, q_{n} in \mathbb{C}^{m}, the matrix

$$
P=\sum_{j=1}^{n} q_{j} q_{j}^{*}
$$

gives the component in $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ of the decomposition of x as a sum of a vector in this subspace plus a vector orthogonal to it. This matrix is called the orthogonal projector onto the subspace $S_{1}=\left\langle q_{1}, \ldots, q_{n}\right\rangle$.

Easy properties

$$
P=\sum_{j=1}^{n} q_{j} q_{j}^{*} \quad q_{1}, \ldots, q_{n} \quad \text { orthonormal }
$$

- P is hermitian $\left(P^{*}=P\right)$
- $P^{2}=P$
- If $n=m$, then $P=1$
- $P x=x$ for all $x \in \operatorname{range}(P)=\left\langle q_{1}, \ldots, q_{n}\right\rangle$
- $P x=0$ if and only if $x \perp$ range (P)
- The eigenvalues of P are 1 (multiplicity n) and 0 (multiplicity $n-m$)
- $I-P$ is also an orthogonal projector (what is its range?)

$$
P=\sum_{j=1}^{n} q_{j} q_{j}^{*} \quad q_{1}, \ldots, q_{n} \quad \text { orthonormal }
$$

If \widehat{Q} is the matrix whose columns are q_{1}, \ldots, q_{n}, then

$$
P=\widehat{Q} \widehat{Q}^{*} .
$$

(Note that $\widehat{Q}^{*} \widehat{Q}=I_{n}$ though.) If Q is unitary and contains q_{1}, \ldots, q_{n} as its first columns, then

$$
P=Q \Sigma Q^{*}, \quad \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Orthogonal projectors without orthonormal bases

Let $S_{1}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a subspace of \mathbb{C}^{m}, given as the span of n linearly independent vectors. The orthogonal projector onto S_{1} is given by the matrix

$$
P=A\left(A^{*} A\right)^{-1} A^{*}
$$

First of all, $P^{*}=P$ and $P^{2}=P$. (This is easy to verify. Do it!) Next, note how

$$
\begin{aligned}
(P x)^{*}((I-P) y) & =x^{*} P(I-P) y=x^{*} P(I-P) y \\
& =x^{*}\left(P-P^{2}\right) y=0
\end{aligned}
$$

This means that the decomposition

$$
x=P x+(I-P) x
$$

is orthogonal and therefore P is an orthogonal projector onto its own range.

Orthogonal projectors without orthonormal bases (2)

We only need to check that the range of P is the range of A, that is, S_{1}. Two things to prove:

- if $x \in \operatorname{range}(P)$, then

$$
x=A \underbrace{\left(A^{*} A\right)^{-1} A^{*} y}_{z} \in \operatorname{range}(A) .
$$

- if $x \in \operatorname{range}(A)$, then $x=A y$ and

$$
P x=A \underbrace{\left(A^{*} A\right)^{-1} A^{*} A}_{1} y=A y=x \in \operatorname{range}(P)
$$

We will find better ways in the next chapters. Here's the most direct method

You do not construct the matrix P. If you only have a basis of the subspace, construct the matrix A whose columns are the elements of the basis. Then

- Multiply $y=A^{*} x$
- Solve the system $\left(A^{*} A\right) z=y=A^{*} x$
- Multiply Az

The result is the projection of x onto the space spanned by the columns of A.

Oblique projectors

Any square matrix P satisfying $P^{2}=P$ is called a projector (an oblique projector).

Two important results on oblique projectors:
(1) If $P^{2}=P$, then

$$
(I-P)^{2}=I-2 P+P^{2}=I-P,
$$

so $I-P$ is a projector too. It is called the complementary projector
(2) If P is a projector, P is an orthogonal projector if and only if $P^{*}=P$.
And... if P is a projector, $I-2 P$ is invertible. (Why? Show that $\left.(I-2 P)^{2}=I\right)$)

Oblique projectors (2)

Consider an oblique projector P. Let $S_{1}=\operatorname{range}(P)$. By definition of projector

$$
x \in \operatorname{range}(P) \quad \Longleftrightarrow \quad P x=x
$$

(Prove this!) Also,

$$
x \in \operatorname{range}(I-P) \quad \Longleftrightarrow \quad P x=0,
$$

and we denote $S_{2}=\operatorname{range}(I-P)=\operatorname{null}(P)$. The projector P projects onto S_{1} along S_{2}.
We then have a decomposition for every vector

$$
x=\underbrace{P x}_{\in S_{1}}+\underbrace{(I-P) x}_{\in S_{2}} .
$$

Geometrically speaking, to know the projection P, you need to know its range S_{1} and the range of its complementary projection S_{2}. With orthogonal projections, hey are orthogonal to each other and only one of them is needed.

A particular case

If $S_{1}=\langle p\rangle=\langle q\rangle$ where $q=\frac{1}{\|p\|} p$, then the orthogonal projector onto S_{1} is given by

$$
P=q q^{*}=\frac{1}{\|p\|^{2}} p p^{*}
$$

its complementary projection is

$$
I-P=I-q q^{*}=I-\frac{1}{\|p\|^{2}} p p^{*} .
$$

Finally

$$
I-2 P
$$

is an operator for symmetry with respect to the hyperplane S_{1}^{\perp}. Note that $I-2 P$ is a unitary matrix, because $P^{2}=P=P^{*}$.

Reduced QR decompositions

Let q_{1}, \ldots, q_{j} be an orthonormal collection of vectors. The orthogonal projection of v onto $\left\langle q_{1}, \ldots, q_{j}\right\rangle$ is the vector

$$
\sum_{i=1}^{j}\left(q_{j}^{*} v\right) q_{j} .
$$

For the moment being, let A be an $m \times n$ matrix with full rank by columns. (Therefore $m \geq n$.) A reduced $Q R$ decomposition is a factorization

$$
A=\widehat{Q} \widehat{R},
$$

where:

- \widehat{Q} has orthonormal columns, that is,

$$
\widehat{Q}^{*} \widehat{Q}=I_{n}
$$

- \widehat{R} is upper triangular (with non-zero diagonal elements why?)
- in some cases, it is also required that $r_{i i}>0$ for all i.

What does the decomposition mean?

This is the matrix form:

$$
\left[\begin{array}{l|l|l}
a_{1} & \cdots & a_{n}
\end{array}\right]=\left[\begin{array}{l|l|l}
q_{1} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & \ldots & r_{1 n} \\
& \ddots & \vdots \\
& & r_{n n}
\end{array}\right]
$$

Now with vectors:

$$
\begin{aligned}
a_{1} & =r_{11} q_{1} \\
a_{2} & =r_{12} q_{1}+r_{22} q_{2} \\
& \vdots \\
a_{n} & =r_{1 n} q_{1}+\ldots+r_{n n} q_{n}
\end{aligned}
$$

What does the decomposition mean? (2)

With vectors, everything in one expression

$$
a_{j}=r_{1 j} q_{1}+\ldots+r_{j j} q_{j}=\sum_{i=1}^{j} r_{i j} q_{i}, \quad j=1, \ldots, n .
$$

Something equivalent but written in a funny way (thanks to $r_{i j} \neq 0$ for all j)

$$
\frac{1}{r_{i j}}\left(a_{j}-\sum_{i=1}^{j-1} r_{i j} q_{i}\right)=q_{j}, \quad j=1, \ldots, n .
$$

Can you see how

$$
\left\langle a_{1}, \ldots, a_{j}\right\rangle=\left\langle q_{1}, \ldots, q_{j}\right\rangle \quad j=1, \ldots, n \quad ?
$$

Finding a reduced $Q R$ decomposition is equivalent to finding orthonormal bases for the growing column subspaces.

Existence, uniqueness, computation

We are going to focus our attention in the case of an $m \times 3$ matrix with full rank by columns. We want to find $\left\{q_{1}, q_{2}, q_{3}\right\}$ orthonormal, and the elements of an upper triangular matris $r_{i j}$ with positive diagonal ${ }^{1}$, satisfying

$$
\begin{aligned}
& a_{1}=r_{11} q_{1}, \\
& a_{2}=r_{12} q_{1}+r_{22} q_{2} \\
& a_{3}=r_{13} q_{1}+r_{23} q_{2}+r_{33} q_{3}
\end{aligned}
$$

Since $\left\|q_{1}\right\|_{2}=1$ and $r_{11}>0$, there are no many options for the first equation

$$
r_{11}=\left\|a_{1}\right\|_{2}, \quad q_{1}=\frac{1}{r_{11}} v_{1}
$$

[^0]
Existence, uniqueness, computation (2)

What we have so far...

$$
\begin{aligned}
& a_{1}=r_{11} q_{1} \\
& a_{2}=r_{12} q_{1}+r_{22} q_{2} \\
& a_{3}=r_{13} q_{1}+r_{23} q_{2}+r_{33} q_{3}
\end{aligned}
$$

Looking at the second equation, we use that $q_{1}^{*} q_{2}=0$ and $q_{1}^{*} q_{1}=1$ to obtain

$$
r_{12}=q_{1}^{*} a_{2}
$$

Then

$$
\begin{aligned}
r_{22} q_{2} & =a_{2}-\left(q_{1}^{*} a_{2}\right) q_{1} \\
& \left.=a_{2}-\text { (orth.proj. of } a_{2} \text { onto }\left\langle q_{1}\right\rangle\right)=v_{2}
\end{aligned}
$$

leading to

$$
r_{22}=\left\|v_{2}\right\|_{2}, \quad q_{2}=\frac{1}{r_{22}} v_{2}
$$

Existence, uniqueness, computation (3)

What we have so far...

$$
\begin{aligned}
& a_{1}=r_{11} q_{1}, \\
& a_{2}=r_{12} q_{1}+r_{22} q_{2}, \\
& a_{3}=r_{13} q_{1}+r_{23} q_{2}+r_{33} q_{3}
\end{aligned}
$$

With the same idea (use that $q_{i}^{*} q_{j}=\delta_{i j}$)

$$
r_{13}=q_{1}^{*} a_{3}, \quad r_{23}=q_{2}^{*} a_{3}
$$

and

$$
\begin{aligned}
r_{33} q_{3} & =a_{3}-\left(q_{1}^{*} a_{3}\right) q_{1}-\left(q_{2}^{*} a_{3}\right) q_{2} \\
& \left.=a_{3}-\text { (orth.proj. of } a_{3} \text { onto }\left\langle q_{1}, q_{2}\right\rangle\right)=v_{3}
\end{aligned}
$$

leading to

$$
r_{33}=\left\|v_{3}\right\|_{2}, \quad q_{3}=\frac{1}{r_{33}} v_{3} .
$$

Existence, uniqueness, computation (4)

We can continue with as many vectors as we have...

$$
a_{j}=\sum_{i=1}^{j-1} r_{i j} q_{i}+r_{j j} q_{j} .
$$

We first compute the coefficients

$$
r_{i j}=q_{i}^{*} a_{j} \quad i=1, \ldots, j-1
$$

(upper part of the j-th column of \widehat{R}), substract the result
$r_{j j} q_{j}=v_{j}=a_{j}-\sum_{i=1}^{j-1} r_{i j} q_{i}=a_{j}-\left(\right.$ orth.proj. of a_{j} onto $\left.\left\langle q_{1}, \ldots, q_{j-1}\right\rangle\right)$
and finally choose $r_{j j}=\left\|v_{j}\right\|_{2}$ and $q_{j}=\frac{1}{r_{i j}} v_{j}$.

Sounds familiar?

This is the algorithm in algebraic form: for $j=1, \ldots, n$, compute

$$
r_{i j}=q_{i}^{*} a_{j} \quad(i=1, \ldots, j-1), \quad v_{j}=a_{j}-\sum_{i=1}^{j-1} r_{i j} q_{i}
$$

and then

$$
r_{i j}=\left\|v_{j}\right\|_{2}, \quad q_{j}=\frac{1}{r_{i j}} v_{j} .
$$

(This is the well-known Gram-Schmidt orthogonalization method.)

Conclusions from the method

The GS method shows that:

- There is a reduced $Q R$ decomposition. The only place where it can fail is if if at a given moment $v_{j}=0$. However, this implies that $a_{j} \in\left\langle q_{1}, \ldots, q_{j-1}\right\rangle=\left\langle a_{1}, \ldots, a_{j-1}\right\rangle$.
- The decomposition is unique if we demand $r_{j j}>0$ for all j (not true if we don't). When we write

$$
r_{i j} q_{j}=v_{j}
$$

with the requirement $\left\|q_{j}\right\|_{2}=1$ we have two choices for $r_{i j}$ (keeping everything real) and infinitely many in the complex case. If we decide a priori to have $r_{j j}>0$, the algorithm is closed.

Classical Gram-Schmidt method

Idea. As we compute $r_{i j}$, we subtract the corresponding contribution in v_{j}.

$$
\text { for } j=1: n
$$

$$
v_{j}=a_{j}
$$

$$
\text { for } i=1: j-1
$$

$$
\begin{aligned}
r_{i j} & =q_{i}^{*} a_{j} \\
v_{j} & =v_{j}-r_{i j} q_{i}
\end{aligned}
$$

end

$$
\begin{aligned}
& r_{j j}=\left\|v_{j}\right\|_{2} \\
& q_{j}=\frac{1}{r_{j j}} v_{j}
\end{aligned}
$$

end
Warning. This method is unstable. Do not use GS in this form!

Full QR and rank-deficiency

Full QR decomposition

Let A be an $m \times n$ matrix with rank equal to n. We can then write

$$
A=\widehat{Q} \widehat{R}
$$

We then:

- add columns to the right of \widehat{Q} to build a unitary matrix Q
- append $m-n$ zero rows under \widehat{R} to have an $m \times n$ upper triangular matrix R
(Does this process sound familiar?). This leads to

$$
A=Q R
$$

which is called a full $Q R$ decomposition.
The Householder method (first coding assignment) computes a full $Q R$ decomposition directly.

Now, let's see... what are we doing here?

$$
\begin{aligned}
& I=1 \quad \% \text { counter of orthonormal vectors } \\
& \text { for } j=1: n \\
& v_{j}=a_{j} \\
& \text { for } i=1: l-1 \\
& r_{i j}=q_{i}^{*} a_{j} \\
& v_{j}=v_{j}-r_{i j} q_{i} \\
& \text { end } \\
& \text { if }\left\|v_{j}\right\|_{2}>0 \quad \text { \% active only for a new indep. column } \\
& r_{j l}=\left\|v_{j}\right\|_{2} \\
& q_{l}=\frac{1}{r_{j l}} v_{j} \\
& I=I+1 \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

[^0]: ${ }^{1}$ Otherwise, there's no uniqueness. We'll see how Matlab always computes another $Q R$ decomposition

