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Plan for this week

Discuss any problems you couldn’t solve previous lectures
Read Lectures 8, 10, and 11
The first coding assignment is due Friday
The other two coding assignments will be cut into smaller
pieces

Remember that...
... I’ll keep on updating, correcting, and modifying the slides
until the end of each week.

Important for next week
The next collection of chapters of the book (Lectures 12 to 15)
are better read than explained. You’ll have a lot of reading next
week.
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MATLAB TIPS
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Vectorizing what’s not vectorized

Imagine you have two row lists of numbers

[t1, . . . , tm], [τ1, . . . , τn]

and we want to compute the m × n matrix with values

ti − τj .

Here’s how...

>> t=[1 2 3]; tau=[0 2 4 6];
>> bsxfun(@minus,t’,tau)
ans =

1 -1 -3 -5
2 0 -2 -4
3 1 -1 -3
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Reading backwards?

If you want to read the columns of a matrix from end to
beginning, you can do this...

>> A=[1 2 3 4;5 6 7 8;9 10 11 12]
A =

1 2 3 4
5 6 7 8
9 10 11 12

>> A(:,end:-1:1)
ans =

4 3 2 1
8 7 6 5

12 11 10 9
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GRAM-SCHMIDT
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Review of the classical Gram-Schmidt method

For j = 1 to the number of columns of A (assumed to be linearly
independent), compute

vj = aj −
j−1∑
i=1

(q∗i aj)︸ ︷︷ ︸
ri j

qi = aj −
j−1∑
i=1

qiq∗i aj

= (I −
j−1∑
i=1

qiq∗i )aj = Pjaj

and then
rjj = ‖vj‖, qj =

1
rjj

vj .
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Recycled pseudocode

Remember that the goal is the reduced QR decomposition

A = Q̂R̂

for j = 1 : n % this loop runs on columns of Q and A
vj = aj
for i = 1 : j − 1 % this loop is the summation sign

rij = q∗i aj % the j-th column of R is computed
vj = vj − rijqi

end
rjj = ‖vj‖2
qj = 1

rjj
vj

end
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A pictorial representation of classical GS

A Q R

In blue the column of A we are using and the elements of Q and R
we are computing. We are in the third go through the loop. The red
elements of Q and R have been computed already. The green
elements of A are not active in this step.
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An alternative version of the algorithm (not final yet)

Observation

Pj = I −
j−1∑
i=1

qiq∗i = (I − qj−1q∗j−1)...(I − q2q∗2)(I − q1q∗1)

for j = 1 : n % this loop runs on columns of Q and A
vj = aj
for i = 1 : j − 1 % loop for progressive projections

rij = q∗i vj % we use vj instead of aj
vj = vj − rijqi

end
rjj = ‖vj‖2
qj = 1

rjj
vj

end
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The final version

for j = 1 : n
vj = aj

end
for j = 1 : n

for i = 1 : j − 1
rij = q∗i vj
vj = vj − rijqi

end
rjj = ‖vj‖2
qj = 1

rjj
vj

end

for j = 1 : n
vj = aj

end
for i = 1 : n

rii = ‖vi‖2
qi = 1

rii
vi

for j = i + 1 : n
rij = q∗i vj
vj = vj − rijqi

end
end

Once the vector qi is computed, the projection of all columns onto 〈qi〉
is subtracted. The matrix R is computed row-wise now.
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A pictorial representation of modified GS

A Q R

In blue the columns of A that are being used are using and the
elements of Q and R we are computing. (A was copied in V and is
modified in each step.) We are in the third go through the loop. The
red elements of Q and R have been computed already. The green
elements of A are not active in this step and won’t be any longer.

FJS MATH 612 12 / 35



Operation count

We count flops (sums, substractions, multiplications, and
division). A norm and a dot-product need 2m− 1 flops (m is the
number of elements of the vectors).
Each run of the internal loop needs 2m − 1 + 2m ∼ 4m flops.
Each run of the external loop then needs

∼ 2m − 1 + m + (n − i)4m ∼ 3m + 4m(n − i)

and then the total count is

∼ 3mn + 4m
n∑

i=1

(n − i) = 3mn + 4m
n∑

i=1

i ∼ 2mn2

There’s an amazing geometric interpretation of the operation
count in the book that you should really understand. It’s much
simpler than this kind of bean counting.
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HOUSEHOLDER
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A new goal

Given a matrix A with full column rank, compute a full QR
decomposition

A = QR, Q unitary, R upper triangular

The basic idea
Given x ∈ Cm, we construct

u =
1

‖x + σ‖x‖2e1‖2
(x + σ‖x‖2e1), σ := sign(x1)

Then, the Householder reflector Hu = I − 2uu∗ satisfies

Hux = −σe1

Huy = y if y⊥u,
Huy = y − 2u(u∗y) for a general vector
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Householder’s method (rough pseudo-code)

Start with A(1) = A. For increasing j , follow this process

xj := j-th column of A(j),

cj := elements j to m of xj

σj := sign of the first element of cj

vj :=
1

‖cj + σj‖cj‖2e1‖2
(cj + σj‖cj‖2e1)

uj := add j − 1 zeros on top of vj

A(j+1) := (I − 2uju∗j )A(j)

The matrix

R = A(n+1) = (I − 2unu∗n) . . . (I − 2u1u∗1)A

is upper triangular.

FJS MATH 612 16 / 35



Householder’s method: why it works

In the first step, the first column of A(2) has its last m − 1
elements equal to zero
In the second step, u2 starts with a zero component, so
Hu2 = I − 2u2u∗2 does not modify the first column of A(2).
The vector u2 is chosen so that the last m − 2 elements of
the second column of A(3) vanish.
In the third step, u3 starts with two zero elements, so Hu3

does not modify the first two columns of A(3). The vector u3
is chose so that the last m− 3 elements of the third column
of A(4) vanish.
Et cetera.
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Householder delivers QR

The construction is

R = (I − 2unu∗n) . . . (I − 2u1u∗1)A

and therefore
A = QR,

where

Q = (I − 2u1u∗1) . . . (I − 2unu∗n) = (I − 2u1u∗1) . . . (I − 2unu∗n)I

is a unitary matrix.
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A picture

We are about to begin the
fourth step. The elements in
red will not be modified any
longer. The column in blue is
activated to create a short (4
components) reflection vector.
All non-red elements will be
modified in this step. Zeros
(blanks) are untouched.
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A key point in the algorithm

To compute

A(j+1) := (I − 2uju∗j )A(j) = A(j) − 2uj(u∗j A(j)),

note that:
The first j − 1 columns will not be modified, so we do not
need to operate with them.
The first j − 1 rows will not be modified (think of each
column vector as the sum of two vectors: one will remain
the same, the other one will be modified). Instead of
working with uj we can work with vj

A similar point can be raised in the computation of Q, if this
matrix is wanted at all. We can just store the vectors uj and an
algorithm to multiply by Q, or, even better, the vectors vj ...
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LEAST SQUARES
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An optimization problem

Let A be an m × n matrix and b ∈ Cm. Find x ∈ Cn minimizing

‖b − Ax‖2.

By x minimizing ‖b − Ax‖2 we mean

‖b − Ax‖2 ≤ ‖b − Az‖2 ∀z ∈ Cn.

The vector r = b − Ax is called the residual.
We will be able to solve this problem because the norm is
the 2−norm. With other norms this problem is actually
quite complicated.
The problem might have more than one of them. In
principle, we care about having one solution. We also care
about the vector Ax , where x is the solution of the
minimization problem.
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An optimization problem (2)

The problem of minimizing

‖b − Ax‖2

is equivalent to minimizing

‖Ax − b‖22 = (Ax − b)∗(Ax − b)

It is called the least squares minimization problem. A
solution of this problem is called a least squares solution of
the system Ax = b.

Remark
A solution of Ax = b is automatically a least squares solution. A
least squares solution might not be a solution though. (Think of
the case when Ax = b is not solvable.)
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An argument leading to a theorem

The cast. A matrix A ∈ Cm×n, a vector b ∈ Cm, the orthogonal
projection y = Pb ∈ Cm of b onto the range of A. (Here P is the
orthogonal projector onto range(A).)
The plot. A bystander z ∈ range(A) enters the scene. Then

b − z = b − y︸ ︷︷ ︸
∈range(A)⊥

+ y − z︸ ︷︷ ︸
∈range(A)

and therefore (Pythagoras anyone?)

‖b − z‖22 = ‖b − y‖22 + ‖y − z‖22 ≥ ‖b − y‖22.

Denouement. We recognize y = Pb = Ax for some x ∈ Cn (by
definition of range of A) and have shown that

‖b − Ax‖22 is minimized ⇐⇒ Ax = y = Pb.
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A chain of conclusions, à la Sherlock

x is a least square solution (x minimizes ‖b − Ax‖2)
iff

Ax is the projection of b onto range(A)
iff

b − Ax is orthogonal to range(A)
iff

b − Ax is orthogonal to the columns of A
iff

A∗(Ax − b) = 0
iff

A∗Ax = A∗b
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Drumroll... and voilà, le théorème

Theorem
The vector x is a least squares solution of Ax = b (i.e., x
minimizes ‖b − Ax‖2) if and only if

A∗Ax = A∗b.

The latter equations are called the normal equations.

Implicit to the argument is the existence of at least one least
squares solution. Start with b, find Pb, its orthogonal projection
onto range(A). Since Pb ∈ range(A) there must be at least one
x such that Ax = Pb. This x (and any other x with the same
property) is a least squares solution.
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Attaboy,... a fictitious dialogue

Professor, professor, ... is the solution unique?
Good question! It might not be. Look again at the
argument. Any x such that Ax = Pb works and only these
x . These equations are solvable. If A has full rank by
columns, the solution is unique. Otherwise, the solution is
determined up to elements of null(A).
Can I get a second opinion?
You are even entitled to it. We want to solve A∗Ax = A∗b.
We know these equations are solvable. And we know

null(A∗A) = null(A).

We know it, but we might not remember it, but we should!
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The full rank case

Minimizing ‖b − Ax‖2 is equivalent to solving the normal
equations

A∗Ax = A∗b.

If (and only if) rank(A) = n (the number of columns), A∗A is
invertible and then

x = (A∗A)−1A∗b.

Now recall that Ax is the orthogonal projection of b onto
range(A) and note that

Ax = A(A∗A)−1A∗︸ ︷︷ ︸
P

b,

which we kind of knew already.
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The pseudoinverse revisited

When A has full rank by columns

x = (A∗A)−1A∗b

is the least squares solution. The matrix

A+ = (A∗A)−1A∗

is called the pseudoinverse of A. Is this the same one we got
with the SVD? Yes. Why? Because we proved that with the
other definition, we always got a solution of the normal
equations, and in this case the solution of the normal equations
is unique.

For a matrix A with full column rank, the pseudoinverse is the
operator that for given b outputs the least square solution of
Ax = b.
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The pseudoinverse revisited (2)

Let A have full rank by columns. Its reduced SVD

A = Q̂Σ̂V ∗

uses
An m × n matrix Q̂ with orthonormal columns.
A square diagonal positive n × n matrix Σ̂ with elements
given in non-increasing order.
A unitary matrix V . (The missing hat is not a typo. In this
case the rank is the number of columns and V is the same
as in a full SVD.) Again, V−1 = V ∗.

With the new definition...

A+ = (A∗A)−1A∗ = (V Σ̂ Q̂∗Q̂︸ ︷︷ ︸
=I

Σ̂V ∗)−1V Σ̂Q̂∗

= (V Σ̂2V ∗)−1V Σ̂Q̂∗ = V Σ̂−2 V ∗V︸︷︷︸
=I

Σ̂Q̂∗ = V Σ̂−1Q̂∗.

FJS MATH 612 30 / 35



Least squares and QR

If A = Q̂R̂ is a reduced QR decomposition of a matrix with full
column rank (therefore R̂ is a square invertible upper triangular
matris), then

A+ = (R̂∗Q̂∗Q̂R̂)−1R̂∗Q̂∗

= (R̂∗R̂)−1R̂∗Q̂∗

= R̂−1Q̂∗.

(Please, be sure you can follow all the steps in this
computation.) Then x is the least square solution if and only if

R̂x = Q̂∗b.

In summary, given a reduced QR decomposition, finding the LS
solution involves: multiplying the r.h.s. by the adjoint of Q̂,
solving and upper triangular linear system. Both steps are
really easy. Nice!
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AN APPLICATION
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Polynomial fitting

Given points
(xi , yi) i = 1, . . .m,

find a polynomial of degree n − 1 or less

p(x) = a0 + a1x + . . .+ an−1xn−1

such that
m∑

i=1

|yi − p(xi)|2 is minimum

(where is minimum is to be read as among all possible choices
of the polynomial p.)

Jargon. The values xi are the data locations. The values yi are
the data. The polynomial p(x) is the model.
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Recasting the problem in our LS format

We change the notation so that the problem fits in the LS
format:

ri = yi − p(xi) = yi −
n−1∑
j=0

ajx
j
i bi = yi

Aij = x j
i ,

i = 1, . . . ,m (number of data)
j = 0, . . . ,n − 1 (polynomial degree)

The polynomial fitting problem is equivalent to minizing

‖b − Ax‖22 =
m∑

i=1

|ri |2

where x is the vector of coefficients of the best polynomial fit.
(Therefore, this problem has always a solution.)
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How about uniqueness?

The matrix

Aij = x j
i ,

i = 1, . . . ,m (number of data)
j = 0, . . . ,n − 1 (polynomial degree)

has full rank by columns if and only if:

there are (at least) n distinct points xi
(which implies that m ≥ n)

You might want to Google about Vandermonde matrices to
understand this statement.
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