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Plan for this week

Discuss any problems you couldn’t solve previous lectures
You have to read lectures 12, 13, and 14
I’ll go over some aspects of these lectures and try to get to
Lecture 15
The second HW assignment is due Friday

Remember that...
... I’ll keep on updating, correcting, and modifying the slides
until the end of each week.
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CONDITIONING
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The condition number of a matrix

Let A be a square invertible matrix. Its condition number is the
quantity

κ(A) = ‖A‖ ‖A−1‖

κ(A) depends on the norm we use, so we should be
tagging it with the same name as the norm we use
κ(A−1) = κ(A)

κ(AB) ≤ κ(A)κ(B) (because ‖A B‖ ≤ ‖A‖ ‖B‖ – which is
required in matrix norms)
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The condition number of a matrix (2)

Assume that we are using one of the ‖ · ‖p norms to define the
condition number. Then

κ(c I) = 1 ∀c 6= 0

and for every matrix
κ(A) ≥ 1.

The sprectral condition number. When p = 2

κ(A) =
σ1

σm
,

where σ1 ≥ . . . ≥ σm > 0 are the singular values of A. (This is a
good moment to recall a certain hyperellipsoid.) Note that if Q
is unitary, then κ(Q) = 1. Why?
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Three tests

We are going to focus in the spectral condition number.
1 We want to measure the sensitivity of

x 7→ Ax

to small perturbances in x .
2 We will then measure the sensitivity of the system

Ax = b

to small perturbances in b.
3 Finally we will look at the first problem again when A is

what’s perturbed.
A large condition number of A means a large dispersion of the
singular values of A.
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First test

We use the full=reduced SVD of A = UΣV ∗. Let:

x = vm ‖x‖2 = 1,
Ax = σmum ‖Ax‖2 = σm,

δx = εv1 ‖δx‖2 = ε,

A(x + δx) = εσ1u1 + σmum,

A(x + δx)− Ax = εσ1u1 ‖A(x + δx)− Ax‖2 = εσ1

We then compute the relative error with respect to the relative
error of data:

‖A(x + δx)− Ax‖2
‖Ax‖2

1
‖δx‖2
‖x‖2

= κ(A).
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A theorem

In general, it’s not difficult to show that

sup
δx 6=0

‖A(x + δx)− Ax‖
‖Ax‖

‖x‖
‖δx‖

= ‖A‖ ‖x‖
‖Ax‖

≤ κ(A).

The quantity in red is called the condition number of the
operation x 7→ Ax with respect to perturbations in x .

The example of the previous slide shows how for a general
invertible matrix and the 2-norm, there are vectors such that the
condition number of the operation x 7→ Ax is κ(A).

Is this bad? In a way. The result says that if your condition
number is very large, no matter how small your data
perturbation is you could get a very large relative error in your
computation.
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A second test

The problem of solving Ax = b is equivalent to the operator
b 7→ A−1b. Therefore, we just apply the conclusions of the
previous slide to A−1:

sup
δb 6=0

‖A−1(b + δb)− A−1b‖
‖A−1b‖

‖b‖
‖δb‖

= ‖A−1‖ ‖b‖
‖A−1b‖

≤ κ(A−1) = κ(A).

We are also able to find examples in the 2-norm where the
upper estimate holds as an equality.
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Third test: dependence w.r.t. the matrix

Try and figure out what happened to A when adding δA:

A = UΣV ∗ ‖A‖2 = σ1,

δA = U(εeme∗m)V ∗ ‖δA‖2 = ε,

x = vm,

Ax = σmum ‖Ax‖2 = σm,

(A + δA)x = (σm + ε)um

(A + δA)x − Ax = εum ‖(A + δA)x − Ax‖2 = ε

This is how the computation of Ax is affected:

‖(A + δA)x − Ax‖2
‖Ax‖2

1
‖δA‖2
‖A‖2

≤ κ(A)
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The corresponding theorem

Just with formulas:

sup
δA6=0

‖(A + δA)x − Ax‖
‖Ax‖

‖A‖
‖δA‖

≤ κ(A)

The same bound applies to the sensitivity of solving Ax = b
with respect to perturbations of A. In this case the perturbations
have to be small enough so that A + δA is still invertible.
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Small interruption with an argument

If Ax = λx , with x 6= 0, then

|λ| =
‖Ax‖
‖x‖

≤ ‖A‖.

Therefore if ‖A‖ < 1 (in any given norm), then I ± A are
invertible (because λ = ∓1 cannot be eigenvalues of A).
Finally, if

‖δA‖ < 1
‖A−1‖

then
‖A−1δA‖ < 1

and
A + δA = A(I + A−1δA) is invertible
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Introducing the Hilbert matrix

The following matrix

Hn =


1 1

2
1
3 . . . 1

n
1
2

1
3

1
4 . . . 1

n+1
1
3

1
4

1
5 . . . 1

n+2
...

...
...

. . .
...

1
n

1
n+1

1
n+2 . . . 1

2n−1


Hij =

1
i + j − 1

is known to have exceptionally bad
condition number.

>> cond(hilb(5))
ans =

4.766072502433796e+005
>> cond(hilb(6))
ans =

1.495105864148109e+007
>> cond(hilb(7))
ans =

4.753673562966472e+008
>> cond(hilb(8))
ans =

1.525757555001589e+010
>> cond(hilb(9))
ans =

4.931541097528780e+011
>> cond(hilb(10))
ans =

1.602492277132444e+013
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An experiment with Hilbert’s matrix

>> n=10;
>> A=hilb(n);u=ones(n,1);
>> b=A*u; v=A\b; norm(u-v)
ans =

7.377072953848606e-004
>> n=20;
>> A=hilb(n);u=ones(n,1);
>> b=A*u; v=A\b; norm(u-v)
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.155429e-019.
ans =

2.011761385588561e+002
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A MORE GENERAL DEFINITION
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Relative condition number

Given a function x 7→ f (x) and ε > 0, we consider all the
relative error of all posible perturbations os size ε or less:

e(ε) := sup
|δx |≤ε

‖f (x + δx)− f (x)‖
‖f (x)‖

‖x‖
‖δx‖

=
‖x‖
‖f (x)‖

sup
|δx |≤ε

‖f (x + δx)− f (x)‖
‖δx‖

and then we take the limit as the size of the perturbation is
reduced:

κ(x) = lim
ε→0

e(ε).
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Example

The roots of the polynomial

(x − 2)2 = x2 − 4x + 4

are compared with a polynomial with a small perturbation:

(1 + δa)x2 + (−4 + δb)x + (4 + δc),

where δa, δb, δc are chosen randomly in ε[−1
2 ,

1
2 ]. We first show

where the roots are when ε = 0.1 and then we look at the
function

ε 7→ max
{
|r1(δa, δb, δc)− 2|

max{|δa|, |δb|, |δc|}
: (δa, δb, δc)

}
.
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These are the roots
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... and this is really bad news
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FLOATING POINT

FJS MATH 612 20 / 38



An approximate floating point model

Even if numbers are typically stored in a different way, we are
going to assume that floating point numbers are the following:
0 is a number, and all other numbers are

±0.x1x2 . . . x16 × 10e, x1 6= 0,

where the exponent varies between a minimum and a
maximum, that we will impose to be

−323 ≤ e ≤ 309.

Warning

Once again, numbers are not typically stored like this, but in
base 2 decompositions, so the the digits xj would be zeros and
ones, there would be more of them and the exponential part
would be 2e. This model is quite close to what is called double
precision.

FJS MATH 612 21 / 38



An approximate floating point model (2)

±0.x1x2 . . . x16 × 10e, x1 6= 0, −322 ≤ e ≤ 309

The sign is separated from the number. There are as many
positive numbers as there are negative numbers.
When a real number is too close to zero (e < −322), the
model goes to underflow. In Matlab, the underflow is
identified with zero.
When a real number is too large (e > 309), the model goes
to overflow. Matlab associated overflow with the number
Inf.
The smallest number and largest numbers (in absolute
value) are

0.1 0 . . . . . . 0︸ ︷︷ ︸
15 zeros

×10−322 = 10−323 0.9 . . . . . . 9︸ ︷︷ ︸
16 nines

×10309.
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An approximate floating point model (2)

±0.x1x2 . . . x16 × 10e, x1 6= 0, −322 ≤ e ≤ 309

The following number to the right of

1 = 0.10 . . . 0× 101

is
0.1 0 . . . 0︸ ︷︷ ︸

14

1× 101 = 1 + 10−15.

Therefore, the distance between 1 and all the numbers to its
right before we reach 10 is 10−15. These numbers are equally
spaced. Once we get to

10 = 0.10 . . . 0× 102

the next number is 10−14 to the right.
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For you to think...

1 How many positive numbers can we store with this model?
2 In this model all integers up to 1016 can be stored exactly.

What happens after that?
3 What is the closest number to 1/3 that is stored in the

model?
4 Repeat the previous question with 1/6.
5 If 10m ≤ x < 10m+1, what is the distance between x and

the closest number in the model?
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Some Matlab experiments

Remember that we are actually working in base 2, so we are
not going to observe the model we have discussed, but
something similar.

>> 1+1e-16
ans =

1
>> 1+1e-15
ans =

1.000000000000001
>> 1+5.551116e-16 % the answer is inbetween
ans =

1.000000000000001
>> 9999999999999999 % I typed 16 nines
ans =

1.000000000000000e+016
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Some Matlab experiments (2)

Remember that we are actually working in base 2, so we are
not going to observe the model we have discussed, but
something similar.

>> 1/6
ans =

0.166666666666667
>> 1/6-0.166666666666666 % I changed the last digit
ans =

6.661338147750939e-016
>> eps % this is what matlab

% recognizes as machine epsilon
ans =

2.220446049250313e-016
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A working model for theory

The issues of magnitude (upper and lower limits for exponents)
are typically ignored when we deal with stability. Real numbers
x will be assigned a floating point representation fl(x) ∈ F. The
four arithmetic operators {+,−,×, /} will have floating point
correspondents {+ , − , × , / }, which act on floating point
numbers. There’s a small number called the machine epsilon
εmachine. We admit the following axioms:

For all x ∈ R,

fl(x) = x(1 + ε), |ε| ≤ εmachine.

For all x , y ∈ F and ∗ ∈ {+,−,×, /},

x ∗ y = (x ∗ y)(1 + ε) |ε| ≤ εmachine.
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BACKWARD STABILITY

FJS MATH 612 28 / 38



Landau’s big O symbol

For notational purposes, we will write things like

ϕ(t) = O(ψ(t)) as t → 0, or t →∞,...

meaning that there exists C such that

|ϕ(t)| ≤ Cψ(t) as t → 0, or t →∞,...

When there are other parameters and C does not depend on
them, we will say the ϕ = O(ψ) uniformly in these other
parameters.

Even if εmachine is fixed, we will admit expressions like

something we have computed = O(εmachine)

assuming that εmachine is allowed to go to zero.
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Terminology

A problem is a function

f : X → Y X ,Y are vector spaces (copies of Rn)

and an algorithm is an actual approximation of the function

f̃ : X → Y .

An algorithm is backward stable if for every x , there exists x̃
such that

‖x − x̃‖
‖x‖

= O(εmachine) and f (x̃) = f̃ (x).
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A simple example

Multiplication of floating point numbers:

f (x1, x2) = x1 × x2, f̃ (x1, x2) = fl(x1)× fl(x2).

The spaces are X = R2 and Y = R. Recall the axioms:

fl(xj) = xj(1 + εj), |εj | ≤ εmachine

x × y = (x × y)(1 + ε3), |ε3| ≤ εmachine.

Then

f̃ (x1, x2) = fl(x1)× fl(x2)

= x1(1 + ε1)︸ ︷︷ ︸
x̃1

x2(1 + ε2)(1 + ε3)︸ ︷︷ ︸
x̃2

= f (x̃1, x̃2).
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A simple example (cont’d)

We have shown that

f̃ (x1, x2) = f (x̃1, x̃2)

with
x̃1 = x1(1 + ε1), x̃2 = x2(1 + ε2)(1 + ε3)

satisfying

|x̃1 − x1|
|x1|

= |ε1| ≤ εmachine = O(εmachine)

|x̃2 − x2|
|x2|

= |ε2 + ε3 + ε2ε3| ≤ 2εmachine + ε2machine = O(εmachine).

So, there we go! Floating point multiplication is backward
stable.
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Stable vs backward stable

f : X → Y is the problem, f̃ : X → Y is the algorithm.

An algorithm is backward stable if for every x , there exists x̃
such that

‖x − x̃‖
‖x‖

= O(εmachine) and f (x̃) = f̃ (x).

An algorithm is stable if for every x , there exists x̃ such that

‖x − x̃‖
‖x‖

= O(εmachine) and
‖f (x̃)− f̃ (x)‖
‖f (x̃)‖

= O(εmachine).

Clearly, backward stable implies stable. The reverse statement
is false.
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An example

The problem and the algorithm:

f (x) = x + 1, f̃ (x) = fl(x) + 1

Looking for backward stability1: we compute

f̃ (x) = (x(1 + ε1) + 1)(1 + ε2)

= x(1 + ε1)(1 + ε2) + ε2︸ ︷︷ ︸
x̃

+1 = f (x̃)

but there’s no backwards stability because

|x − x̃ |
|x |

= O(εmachine) +
O(εmachine)

|x |
.

Funny fact! Adding two numbers is backward stable. Adding 1 to
another number is not.

1every ε is assumed to satisfy |ε| ≤ εmachine
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An example (cont’d)

On the other hand

f̃ (x) = (x(1 + ε1) + 1)(1 + ε2)

= x(1 + ε1)︸ ︷︷ ︸
x̃

+1 +
(

x(1 + ε1)︸ ︷︷ ︸
x̃

+1
)
ε2

= x̃ + 1︸ ︷︷ ︸
f (x̃)

+
(

x̃ + 1︸ ︷︷ ︸
f (x̃)

)
ε2 = f (x̃) + f (x̃)ε2,

which gives

|x − x̃ |
|x |

= O(εmachine)
|̃f (x)− f (x̃)|
|f (x̃)|

= O(εmachine),

which means this algorithm is stable.
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STABILITY AND CONDITIONING
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Review

An algorithm f̃ : X → Y to solve a problem f : X → Y is
backward stable when for all x ∈ X , there exists x̃ ∈ X such that

f̃ (x) = f (x̃) and
‖x − x̃‖
‖x‖

= O(εmachine).

The condition number of the computation f (x) is the limit

κ(x) = lim
δ→0

(
sup
‖δx‖≤δ

‖f (x + δx)− f (x)‖
‖f (x)‖

‖x‖
‖δx‖

)
.

For a given x and δx , we can formally write

‖f (x + δx)− f (x)‖
‖f (x)‖

≤ (κ(x) + o(1))
‖δx‖
‖x‖

where o(1) means that there’s a quantity converging to zero as
δ → 0.
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A simple argument

Let f̃ be a backward stable algorithm for f . Given x , we can find
x̃ such that

f̃ (x) = f (x̃) and
‖x − x̃‖
‖x‖

= O(εmachine).

Then the relative error of the computation satisfies

‖f̃ (x)− f (x)‖
‖f (x)‖

=
‖f (x̃)− f (x)‖
‖f (x)‖

≤ (κ(x) + o(1))
‖x̃ − x‖
‖x‖

= O(κ(x)εmachine).
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