
MATH 612
Computational methods for equation solving

and function minimization – Week # 6

F.J.S.

Spring 2014 – University of Delaware

FJS MATH 612 1 / 58

Plan for this week

Discuss any problems you couldn’t solve from previous
lectures
We will cover Lectures 17, part of 16 and move on to 20
The second coding assignment is due Friday. Radio
silence has been decreed for this assignment: you can
only discuss it with your coding partner.

Remember that...
... I’ll keep on updating, correcting, and modifying the slides
until the end of each week.

FJS MATH 612 2 / 58

MORE ON BACKWARD STABILITY

FJS MATH 612 3 / 58

Review

Arithmetic
For every real number

fl(x) = x(1 + ε), |ε| ≤ εmachine.

For every pair of floating point numbers and ∗ ∈ {+,−,×, /},

x ∗ y = (x ∗ y)(1 + ε), |ε| ≤ εmachine

Backward stability

An algorithm f̃ : X → Y to approximate a problem f : X → Y is
backward stable, when for all x ∈ X , there exists x̃ ∈ X such
that

f (x̃) = f̃ (x), ‖x̃ − x‖ ≤ Cεmachine‖x‖.

FJS MATH 612 4 / 58

The dot product

We want to show that the dot product in floating point arithmetic
is backward stable. Note that algorithms have to be defined in a
fully deterministic way. For instance, given two vectors
(x1, . . . , xm), (y1, . . . , ym), our problem is f : X → R (where
X = Rn × Rn) given by

f ((x , y)) = f (x , y) =
∑

j

xjyj .

The algorithm is, for instance

f̃ (x , y) =

(
. . .
((

(fl(x1) × fl(y1)) + (fl(x2) × fl(y2))
)

+ (fl(x3) × fl(y3))
)
. . . + (fl(xm) × fl(ym))

)

FJS MATH 612 5 / 58

Vectors with two components

Parturbations arise in floating point representations and arithmetic
operations

f̃ (x , y) = (fl(x1) × fl(y1)) + (fl(x2) × fl(y2))

=
(

x1(1 + ε1)︸ ︷︷ ︸
due to fl(x1)

y1(1 + ε2) (1 + ε3)︸ ︷︷ ︸
due to ×

+x2(1 + ε4)y2(1 + ε5)(1 + ε6)
)

(1 + ε7)︸ ︷︷ ︸
due to +

= x1(1 + ε1)(1 + ε7)︸ ︷︷ ︸
x̃1

y1(1 + ε2)(1 + ε3)︸ ︷︷ ︸
ỹ1

+ x2(1 + ε4)(1 + ε7)︸ ︷︷ ︸
x̃2

y2(1 + ε5)(1 + ε6)︸ ︷︷ ︸
ỹ2

= f (x̃ , ỹ)

FJS MATH 612 6 / 58

Vectors with two components (cont’d)

Using that |εj | ≤ εmachine, we cand bound

|(1 + εi)(1 + εj)− 1| ≤ 2εmachine + O(ε2machine).

so

|x̃i − xi | ≤ |xi |(2εmachine + O(ε2machine))

|ỹi − yi | ≤ |yi |(2εmachine + O(ε2machine))

We can wrap up the bounds with the formula

‖(x̃ , ỹ)− (x , y)‖∞ ≤ ‖(x , y)‖∞(2εmachine + O(ε2machine))

FJS MATH 612 7 / 58

Let’s see with three-vectors (11 different ε)

f̃ (x , y) =
(

(fl(x1) × fl(y1)) + (fl(x2) × fl(y2))
)

+ (fl(x3) × fl(y3))

=

((
x1(1 + ε1)y1(1 + ε2)(1 + ε3)

+x2(1 + ε4)y2(1 + ε5)(1 + ε6)
)

(1 + ε7)

+x3(1 + ε8)y3(1 + ε9)(1 + ε10)

)
(1 + ε11)

= x1(1 + ε1)(1 + ε7)︸ ︷︷ ︸
x̃1

y1(1 + ε2)(1 + ε3)(1 + ε11)︸ ︷︷ ︸
ỹ1

+ . . .

and, collecting carefully,

|x̃i − xi | ≤ |xi |(2εmachine + O(ε2machine))

|ỹi − yi | ≤ |yi |(3εmachine + O(ε2machine))

FJS MATH 612 8 / 58

UPPER TRIANGULAR SYSTEMS

FJS MATH 612 9 / 58

Back substitution

Solve the equations backwards

m∑
j=i

ri,jxj = bi , i = m,m − 1, . . . ,1

by computing

xi =
(

bi −
m∑

j=i+1

ri,jxj

)
/ri,i , i = m,m − 1, . . . ,1.

x=zeros(m,1);
for i=m:-1:1

x(i)=(b(i)-r(i,i+1:end)*x(i+1:end))/r(i,i);
% row times column

end

FJS MATH 612 10 / 58

With a picture

x b

In red what is being used when i = 3. In blue the elements of x
that have already been computed, but they are being used in
this step. Entries in green are inactive.

FJS MATH 612 11 / 58

Recursive back substitution

In the previous algorithm, we work equation by equation. Now,
we modify the right-hand-side in each step and reduce the size
of the system by one. The idea is that once xi is computed, its
contribution to all the preceding equations is subtracted.
Initial steps: b(0)

i = bi

xm = b(0)
m /rm,m

b(1)
i = b(0)

i − ri,mxm i = 1, . . . ,m − 1,
xm−1 = b(1)

m /rm−1,m−1

b(2)
i = b(1)

i − ri,m−1xm−1 i = 1, . . . ,m − 2,
xm−2 = ...

In this algorithm we access the upper triangular matrix by
columns. Back substitution uses it by rows.

FJS MATH 612 12 / 58

Recursive back substitution (2)

for i=m:-1:1
x(i)=b(i)/r(i,i);
b(1:i-1)=b(1:i-1)-r(1:i-1,i)*x(i);

end

The flop count for both algorithms is ∼ m2.

Remark. Forward susbtitution for a lower triangular matrix is
back substitution for a system where we count equations and
unknowns in the reverse order. Therefore, everything you show
for back susbtitution is automatically shown for forward
substitution.

FJS MATH 612 13 / 58

With a picture

x b

In red what is being used when i = 3. In blue the elements of x
that have already been computed. Entries in green are inactive.

FJS MATH 612 14 / 58

BKWD STABILITY OF BACK SUBS

FJS MATH 612 15 / 58

In what sense?

We have an invertible upper triangular system

Rx = b, x = R−1b

and solve it using back susbtitution and floating point
operations. The operator is

f (R) = x = R−1b,

that is we consider the matrix to be the input and we fix b. The
algorithm is the result of solving with back susbtitution and
floating point operations. For simplicity, we will assume that the
entries of R and b are already floating point numbers, so we will
only care about how the floating point operations in back
susbtitution affect the result.

FJS MATH 612 16 / 58

In what sense? (2)

Backward stability means: given R we can find another upper
triangular matrix R̃ such that

R̃−1b = f (R̃) = f̃ (R) = x̃ ,

where x̃ is the computed solution, and

‖R̃ − R‖ ≤ Cεmachine‖R‖.

In other words, we can find R̃ such that

R̃x̃ = b = Rx ‖R̃ − R‖ ≤ Cεmachine‖R‖,

or also

(R + δR)x̃ = b, ‖δR‖ ≤ Cεmachine‖R‖.

FJS MATH 612 17 / 58

The 2× 2 case

(Exact) (Computed)
x2 = b2/r22 x̃2 = b2 / r22

x1 = (b1 − r12x2)/r11 x̃1 = (b1 − (r12 × x̃2)) / r11

Two tricks to handle ε...
if |ε| ≤ εmachine, then

1 + ε =
1

1 + ε′
|ε′| ≤ εmachine + O(ε2machine),

if |ε1|, |ε2| ≤ εmachine, then

(1 + ε1)(1 + ε2) = 1 + ε3, |ε3| ≤ 2εmachine + O(ε2machine).

FJS MATH 612 18 / 58

The 2× 2 case (2)

(Exact) (Computed)
x2 = b2/r22 x̃2 = b2 / r22

x1 = (b1 − r12x2)/r11 x̃1 = (b1 − (r12 × x̃2)) / r11

x̃2 =
b2

r22
(1 + ε1) =

b2

r22(1 + ε′1)
=

b2

r̃22

x̃1 =
(b1 − r12x̃2(1 + ε2))(1 + ε3)

r11
(1 + ε4)

=
b1 − r12(1 + ε2)x̃2

r11(1 + ε′3)(1 + ε′4)
=

b1 − r̃12x̃2

r̃11

This is basically it. We have R̃x̃ = b and

|̃rij − rij | = |rij |(cεmachine + O(ε2machine)), c = 1 or 2.

FJS MATH 612 19 / 58

The general result

Given an m ×m invertible upper triangular matrix R and the
system Rx = b, let x̃ be the solution computed using back
substitution with floating point operations (on a computer
satisfying the usual hypotheses). Then there exists an upper
triangular matrix R̃ such that

R̃x̃ = b, |̃rij − rij | = |rij |(mεmachine + O(ε2machine)).

In particular back substitution is backward stable.

FJS MATH 612 20 / 58

The general result, made more general

What we showed (only for the 2× 2 case, but extendable for
larger cases), does not involve the floating point representation
of right-hand-side and matrix. In general, our problem would be

f (R,b) = R−1b.

The algorithm computes for decreasing values of i

x̃i =
(

fl(bi) −
(
fl(ri,i+1) × x̃i+1

)
− . . . −

(
fl(ri,m) × x̃m

))
/ fl(ri,i)

Backward stability would mean that we can find a triangular
matrix R̃ and a right-hand-side b̃ such that

R̃x̃ = b̃,
‖R̃ − R‖
‖R‖

= O(εmachine),
‖b̃ − b‖
‖b‖

= O(εmachine),

where x̃ is the computed solution. The proof for the 2× 2 case
is quite simple. You should try and do it in full detail.

FJS MATH 612 21 / 58

HOUSEHOLDER REVISITED

FJS MATH 612 22 / 58

What Householder triangularization produces

Let us start with an invertible matrix A. The Householder
method delivers a QR decomposition

A = QR,

with R given as an upper triangular matrix and Q stored as a
lower triangular matrix U, whose columns are the vectors
originating the Householder reflectors:

Q = (I − 2u1u∗1)(I − 2u2u∗2) . . . (I − 2umu∗m),

uj =

0
...
0
vj

 , vj ∈ Cm−j+1.

FJS MATH 612 23 / 58

Framing the algorithm

The matrix Q is never stored or computed. To compute

y = Q∗b = (I − 2umu∗m) . . . (I − 2u2u∗2)(I − 2u1u∗1)b

we can proceed as follows:

for k=1:m
b(k:m)=b(k:m)-2*U(k:m)*(U(k:m)’*b(k:m));

end

FJS MATH 612 24 / 58

Solving systems

The algorithm consists of three steps:
1 Compute the QR decomposition A = QR, with Q stored as

U (reflection vectors)
2 Compute y = Q∗b using the multiplication algorithm
3 Solve Rx = y with back substitution

All three steps are computed using floating point
approximations.
We are next going to show the steps needed to prove that this
algorithm is backward stable. Some of the details are not easy,
so we’ll just give a sketch of the entire process.

In today’s lecture the norm will be the 2-norm. This is the best
norm to interact with unitary matrices.

FJS MATH 612 25 / 58

The three steps: Householder

Given A, we compute Q̃ and R̃ using the triangularization
method. The matrix Q̃ is never produced, but Q̃ is unitary
because it’s constructed from vectors with norm exactly equal
to one.

For all invertible A, the matrix Ã given by

Ã = Q̃R̃,

satisfies
‖Ã− A‖
‖A‖

= O(εmachine)

We can also write

Q̃R̃ = A + δA,
‖δA‖
‖A‖

= O(εmachine).

FJS MATH 612 26 / 58

The three steps: unitary transf. and back subs.

Now given Q̃, we compute ỹ = Q̃∗b, using floating point
arithmetic and the Householder multiplication algorithm.

There exists a matrix δQ such that

(Q̃ + δQ)ỹ = b,
‖δQ‖
‖Q̃‖

= ‖δQ‖ = O(εmachine).

There exists δR (upper triangular) such that

(R̃ + δR)x̃ = ỹ ,
‖δR‖
‖R̃‖

= O(εmachine)

FJS MATH 612 27 / 58

All together now

Q̃R̃ = A + δA,
‖δA‖
‖A‖

= O(εmachine)

(Q̃ + δQ)ỹ = b,
‖δQ‖
‖Q̃‖

= ‖δQ‖ = O(εmachine).

(R̃ + δR)x̃ = ỹ ,
‖δR‖
‖R̃‖

= O(εmachine)

FJS MATH 612 28 / 58

Backward stability of the entire process

Susbtituting the effect of the three steps

b = (Q̃ + δQ)ỹ

= (Q̃ + δQ)(R̃ + δR)x̃

= (Q̃R̃ + (δQ)R̃ + Q̃(δR) + (δQ)(δR))x̃

= (A + δA + (δQ)R̃ + Q̃(δR) + (δQ)(δR)︸ ︷︷ ︸
∆A

)x̃ ,

we just need to see that

‖∆A‖
‖A‖

= O(εmachine).

FJS MATH 612 29 / 58

Four matrices: (1) and (2)

∆A = δA + (δQ)R̃ + Q̃(δR) + (δQ)(δR)

‖δA‖ = O(εmachine)‖A‖

‖(δQ)R̃‖ ≤ ‖δQ‖‖R̃‖ = ‖δQ‖ ‖Q̃∗(A + δQ)‖︸ ︷︷ ︸
Q̃R̃=A+δA

≤ O(εmachine)‖Q̃‖‖Q̃∗‖‖A + δA‖
≤ O(εmachine)(‖A‖+ O(εmachine)‖A‖)
≤ O(εmachine)‖A‖

Note that even when Q̃ is never constructed, in the way it is used, we
know that ‖Q̃‖2 = 1.

FJS MATH 612 30 / 58

Four matrices: (3) and (4)

∆A = δA + (δQ)R̃ + Q̃(δR) + (δQ)(δR)

‖Q̃(δR)‖ ≤ ‖Q̃‖‖δR‖ ≤ O(εmachine)‖R̃‖
= O(εmachine)‖Q̃∗(A + δQ)‖ ≤ . . . ≤ O(εmachine)‖A‖

‖(δQ)(δR)‖ ≤ ‖δQ‖‖δR‖ = O(εmachine)‖Q̃‖O(εmachine)‖R̃‖
≤ O(ε2machine)‖A‖

It is easy now to verify that we have finished the proof of
backward stability

FJS MATH 612 31 / 58

GAUSS, THE ELIMINATOR

FJS MATH 612 32 / 58

The rules of the game

In a first stage, Gaussian elimination (applied to the augmented
matrix for a system Ax = b) is applied as follows:

Move from the first column to the last (of A)
In the column j , pick ajj and use it to make elimination of
the elements below it in the matrix
Keep all the changes in the same matrix
At the end you have an upper triangular system Ux = y
If at a certain moment ajj = 0 do not do anythig yet

An elimination step

Subtract mij = aij/ajj times the j-th row from the i-th row, for
i = j + 1 to m. The element mij is called the multiplier. The
element ajj is called the pivot.

FJS MATH 612 33 / 58

Is a picture worth a thousand words?

j

j

i 0

FJS MATH 612 34 / 58

1st version

m=size(A,1);
A=[A,b];
for j=1:m-1

for i=j+1:m
mult=A(i,j)/A(j,j);
A(i,:)=A(i,:)-mult*A(j,:); % (*)

end
end
y=A(:,end); % new r.h.s.
U=A(:,1:end-1); % upper triangular

I hope you are seeing the waste of time in (*)

FJS MATH 612 35 / 58

2nd and 3rd versions

Much better...

for j=1:m-1
for i=j+1:m

mult=A(i,j)/A(j,j);
A(i,j:end)=A(i,j:end)-mult*A(j,j:end);

end
end

All rows at once (in this case there’s a column vector of
multipliers)...

for j=1:m-1
mult=A(j+1:end,j)/A(j,j);
A(j+1:end,j:end)=A(j+1:end,j:end)-mult*A(j,j:end);

end

FJS MATH 612 36 / 58

Finding a non-zero pivot

>> v=[0 1 3 4 0 2]’
>> find(v~=0) % locations of non-zeros
ans =

2
3
4
6

>> find(v~=0,1) % location of the first non-zero
ans =

2
>> find(v,1) % v is understood as v~=0
ans =

2

FJS MATH 612 37 / 58

4th version

We locate the first non-zero in what’s relevant in the j-th
column. The find command delivers a number k between 1
and m − j + 1. The actual number of row is k + j − 1 (which is
between j and m)

for j=1:m-1
k=find(A(j:end,j)~=0,1);
k=k+j-1; % k is relative
A([k j],j:end)=A([j k],j:end);
mult=A(j+1:end,j)/A(j,j);
A(j+1:end,j:end)=A(j+1:end,j:end)-mult*A(j,j:end);

end

FJS MATH 612 38 / 58

Partial pivoting

We will now look for the largest (in absolute value) possible
pivot. Here’s a very cool way of using the maximum finder in
Matlab...

>> v=[0 1 -3 -5.5 0 5.5]’;
>> max(abs(v))
ans =

5.500000000000000
>> [what,where]=max(abs(v))
what =

5.500000000000000
where =

4
>> [~,k]=max(abs(v))
k =

4

In case of ties (many maxima), we get the first one.

FJS MATH 612 39 / 58

A diagram of partial pivoting

Search for a pivot Pivot is located

These rows have to be swapped Swapping complete

FJS MATH 612 40 / 58

5th version: with partial pivoting

We look for the largest possible pivot in the active column. The
max command delivers a number k between 1 and m − j + 1.
The actual number of row is k + j − 1 (which is between j and
m)

for j=1:m-1
[~,k]=max(abs(A(j:end,j)));
k=k+j-1; % k is relative
A([k j],j:end)=A([j k],j:end);
mult=A(j+1:end,j)/A(j,j);
A(j+1:end,j:end)=A(j+1:end,j:end)-mult*A(j,j:end);

end

FJS MATH 612 41 / 58

ELIMINATOR, THE SEQUEL

FJS MATH 612 42 / 58

Two versions of Gaussian elimination

for j=1:m-1
k=find(A(j:end,j)~=0,1);
k=k+j-1;
A([k j],j:end)=A([j k],j:end);
mult=A(j+1:end,j)/A(j,j);
A(j+1:end,j:end)=A(j+1:end,j:end)-mult*A(j,j:end);

end

for j=1:m-1
[~,k]=max(abs(A(j:end,j)));
k=k+j-1;
A([k j],j:end)=A([j k],j:end);
mult=A(j+1:end,j)/A(j,j);
A(j+1:end,j:end)=A(j+1:end,j:end)-mult*A(j,j:end);

end

FJS MATH 612 43 / 58

Two versions of Gaussian elimination

The only difference is in the computation of the row swapping
criterion:

swap pivots when needed (unlikely to happen, not the best
idea)
partial pivoting (recommended)

Both strategies share a single idea:

At the step j (elimination in column number j), we swap row j
with row k with k ≥ j .

Before we adress this (and the storage of multipliers), let’s start
by saving some ‘precious time’ by faking the row swaps.

FJS MATH 612 44 / 58

A simple idea

The element A(i,j) will be addressed as A(row(i),j).
Initially

row(i)=i, i=1,...,m.

When we swap rows, we will only swap the row vector. This is
a permutation of the rows, carried out by permuting the vector
that tells us where they actually are stored.

After several permutations, row(i) tells us the location in the
matrix of the row that we use as row number i .

FJS MATH 612 45 / 58

A simple example for the simple idea

This is like the shell game. Can you follow the rows?

>> A=[1 2 3;4 5 6;7 8 9;10 11 12];
>> row=1:4;
>> row([1 3])=row([3 1]);
>> row([2 4])=row([4 2]);
>> row([3 4])=row([4 3]);
>> row
row =

3 4 2 1
>> A(row,:)
ans =

7 8 9
10 11 12
4 5 6
1 2 3

FJS MATH 612 46 / 58

Version 6.0

At the end U is not upper triangular, but U(row,:) is. Note
how row has to be used always in the first index of A.

m=size(A,1);
A=[A,b];
row=1:m;
for j=1:m-1

[~,k]=max(abs(A(row(j:end),j)));
k=k+j-1;
row([k j])=row([j k]);
mult=A(row(j+1:end),j)/A(row(j),j);
A(row(j+1:end),j:end)=A(row(j+1:end),j:end)...

-mult*A(row(j),j:end);
end
c=A(:,end);
U=A(:,1:end-1);

FJS MATH 612 47 / 58

Storing the multipliers (version 6.1)

At the step j , we create m − j zeros in the rows j + 1, . . . ,m
(column j). Instead of making these zeros, we store the
multipliers there. Note how A is still accessed with row to refer
to its rows.

for j=1:m
[~,k]=max(abs(A(row(j:end),j)));
k=k+j-1;
row([k j])=row([j k]);
mult=A(row(j+1:end),j)/A(row(j),j);
A(row(j+1:end),j+1:end)=A(row(j+1:end),j+1:end)...

-mult*A(row(j),j+1:end);
A(row(j+1:end),j)=mult;

end

FJS MATH 612 48 / 58

What’s in A at the end

After this fake elimination, with storage of the multipliers and
lots and lots of row swaps, A is a complete mess. However,
A(row,:) is better.

The r.h.s is in green. In red the upper triangular matrix. In
blue, the multipliers. The row permutation is row=[3 4 2 1],
A is on the left, A(row,:) on the right.

FJS MATH 612 49 / 58

A little bit more Matlab

These two functions are not that clever, but they save some
time in building a loop.

>> A=[1 2 3;4 5 6;7 8 9]
A =

1 2 3
4 5 6
7 8 9

>> triu(A) % upper triangular part
ans =

1 2 3
0 5 6
0 0 9

>> tril(A,-1) % lower tr, starting in -1 diagonal
ans =

0 0 0
4 0 0
7 8 0

FJS MATH 612 50 / 58

Wrap up and mysterious conclusion

... after doing everything we did, we unpack A and the right
hand side in the following way:

y=A(row,end);
A(:,end)=[];
U=triu(A(row,:));
L=tril(A(row,:),-1)+eye(m);

L*U=A(row,:)

FJS MATH 612 51 / 58

LU DECOMPOSITIONS

FJS MATH 612 52 / 58

Permutations first – a wordy slide

Assume we are using the partial pivoting or the
swap-only-when-needed strategy for Gaussian elimination. At
the end we have a vector with the final permutations of the rows
of the matrix. Remember that at the step j we only permute row
j with one row which is under it. Therefore, the row that is
placed in row j at the step j does not move from there in future
steps.

It is not difficult to see that if we perform all the permutations at
the beginning (before doing any elimination), the algorithm
would proceed without any row changes.

Therefore, instead of applying Gaussian elimination with row
changes to the matrix A, we can think of applying Gaussian
elimination with no row changes to PA, where P is the
permutation matrix associated to the final disposition of the
rows due to row swaps.

FJS MATH 612 53 / 58

Elimination

The operations performed in the j-th step of the Gaussian
elimination method are equivalent to left-multiplying by the
matrix

Lj =

1
. . .

1
−lj+1,j 1

...
. . .

−lm,j 1

where lj+1,j , . . . , lm,j are the multipliers. (Unfortunately we are
using m for the number of rows, so we need to change the
letter for the multiplier.)

FJS MATH 612 54 / 58

Matrix form of Gaussian elimination

Permutations can be moved to be the first step of the process
(in theory; in practice we are figuring them out as we proceed).
Elimination is carried out by the matrices Lj of the previous
slide.

Lm−1 . . . L2L1PA = U.

Therefore
PA = L−1

1 L−1
2 . . . L−1

m−1U

FJS MATH 612 55 / 58

Finding L (part one)

Looking at the formula

Lj =

1
. . .

1
−lj+1,j 1

...
. . .

−lm,j 1

L−1

j =

1
. . .

1
lj+1,j 1

...
. . .

lm,j 1

we can see how L−1

j is the matrix that undoes the j-th
elimination step: to each row, it adds back the multiplier times
the j-th row.

FJS MATH 612 56 / 58

Finding L (part two)

Therefore

L−1
1 L−1

2 . . . L−1
m−1 = L−1

1 L−1
2 . . . L−1

m−1I

is the result of applying the opposite of the Gaussian
elimination steps, in the reverse order, to the identity matrix.
How difficult is it now to verify that

L−1
1 L−1

2 . . . L−1
m−1 =

1
l21 1
l31 l32 1
...

...
.

lm1 lm2 . . . lm,m−1 1

 ?

FJS MATH 612 57 / 58

Give you answer in the form of a theorem

Let P be the permutation matrix that corresponds to the final
permutation of rows after the elimination process is ended. Let
U be the resulting upper triangular matrix. Let L be the lower
triangular matrix storing the multipliers of Gaussian elimination
in the location they have been used1 with ones in the diagonal.
Then

LU = PA.

1This means that if the row changes place during one of the next
elimination steps, the multiplier has to change place as well. Our algorithm
does this automatically.

FJS MATH 612 58 / 58

