
MATH 612
Computational methods for equation solving

and function minimization – Week # 9

F.J.S.

Spring 2014 – University of Delaware

FJS MATH 612 1 / 36

Plan for this week

Discuss any problems you couldn’t solve from previous
lectures
We will cover Lectures 23, 32, and 33
Homework is due next Monday
There might be a surprise quiz. Apply the prisoner’s
paradox at will

Remember that...
... I’ll keep on updating, correcting, and modifying the slides
until the end of each week.

FJS MATH 612 2 / 36

CHOLESKY

FJS MATH 612 3 / 36

Characterization of PD matrices

A Hermitian positive matrix is a matrix A ∈ Cm×m for which

A∗ = A, and x∗Ax > 0 ∀0 6= x ∈ Cm.

(Note that for a Hermitian matrix and any vector x , x∗Ax ∈ R.
Why?)
The spectral theorem. A matrix A is Hermitian PD if and only if

A = QDQ∗,

where Q is unitary and D is diagonal with dii > 0 for all i . In
other words, a Hermitian matrix is PD if and only all its
eigenvalues are positive.

FJS MATH 612 4 / 36

Characterization of PD matrices (2)

Consequence. A matrix A is Hermitian PD if and only if

A = P∗ P, with P invertible.

Look ant this A = QDQ∗ = (QD1/2)(QD1/2)∗. Then look at this
x∗P∗Px = (Px)∗(Px) = ‖Px‖2

2.

Today’s goal
We will show that we can take P to be upper triangular with
positive diagonal. (This is called a Cholesky factorization.) We
will show an algorithm to compute this factorization.

Some questions. How do you call a Hermitian matrix such that −A is PD?
How about if you just demand x∗Ax ≥ 0 for all x? And x∗Ax ≤ 0 for all x?
Have you ever heard of an indefinite matrix?

FJS MATH 612 5 / 36

Simple facts

If A is a Hermitian PD matrix,
aii > 0 for all i

aii = e∗
i Aei ,

if P is invertible, then PAP∗ is Hermitian PD as well

x∗PAP∗x = (P∗x)∗A(P∗x) > 0, and x 6= 0 =⇒ P∗x 6= 0.

we can apply Gaussian elimination without ever swapping
rows and the pivots are always positive (this is a
characterization as well) – this third fact is not that simple,
we’ll need two more slides to prove it.

FJS MATH 612 6 / 36

Hermitian PD matrices and Gaussian elimination

The first step.1 We know that a11 > 0. We use the multipliers

li1 =
ai1

a11
=

a1i

a11
.

Then 
1
−l21 1

...
. . .

−lm1 1

A =


a11 a12 . . . a1m
0 b22 . . . b2m
...

...
. . .

...
0 bm2 . . . bmm


In the next slide we will show (it’s really easy though) that the
submatrix B is also Hermitian and PD.

1Don’t call this an iteration!
FJS MATH 612 7 / 36

Hermitian PD matrices and Gaussian elimination

This is why!
1
−l21 1

...
. . .

−lm1 1


︸ ︷︷ ︸

L1

AL∗1 =


a11 0 . . . 0
0 b22 . . . b2m
...

...
. . .

...
0 bm2 . . . bmm



The conjugate multipliers can be used to apply Gaussian
elimination by columns. The pivot is the same a11 > 0 and we
need to eliminate ai1 = a1i .

What’s left is up to you

Can you see why the (m− 1)× (m− 1) matrix is Hermitian and
PD?

FJS MATH 612 8 / 36

The search for an algorithm

We have shown that for A Hermitian PD, we can apply
Gaussian elimination without ever swapping rows. The pivots
are always positive. Therefore

A = LU

where L is lower triangular with 1s in the diagonal and U is
upper triangular with uii > 0.
We can do better:

Lm−1 . . . L1AL∗1 . . . L
∗
m−1 =

 u11
. . .

umm

 = D

This proves that

A = LD1/2D1/2L∗ = (LD1/2) (LD1/2)∗︸ ︷︷ ︸
R

.

FJS MATH 612 9 / 36

The search for an algorithm (2)

A = LU = LD1/2︸ ︷︷ ︸
R∗

D−1/2U︸ ︷︷ ︸
R

Here’s our first algorithm (not the best one):
Apply Gaussian elimination, No row swaps are needed or
allowed!
Make a note of the multipliers (as in the LU factorization)
Multiply the i-th column by

√
uii . This can be done right

after computing the column.
Another way of looking at this is:

Do not make a note of the multipliers
After using the j-th row for elimination, divide it by

√
uii .

FJS MATH 612 10 / 36

The search for an algorithm (3): bear with me

In the usual GE process, we need to compute what’s under
the diagonal, because we need these numbers to compute
the multipliers in forthcoming iterations.
For a Hermitian PD matrix, this is not the case. The
smaller blocks to which we apply GE are always Hermitian
PD, so everything is above the diagonal
What to do: forget that the lower part of the matrix (below
the diagonal) even exists. Everytime you need one number
down there pick it up from the upper part of the matrix. For
multipliers, use

aji

ajj
instead

aij

ajj
.

Save time not dealing with anything below the diagonal.

FJS MATH 612 11 / 36

A picture

Only the upper triangular part of A is ever used. In the first step,
the positive green pivot and the red elements are used to
compute the multipliers. All blue elements are modified and
nothing else. We then move one row down...

FJS MATH 612 12 / 36

Here’s the algorithm

m=size(A,2);
R=A;
for k=1:m

for j=k+1:m
R(j,j:m)=R(j,j:m)-R(k,j:m)*conj(R(k,j))/R(k,k);

end
R(k,k:m)=R(k,k:m)/sqrt(R(k,k));

end

An finally...

Once you have A = R∗R, to solve Ax = b, solve

R∗y = b, followed by Rx = y .

FJS MATH 612 13 / 36

Complexity and stability

Work for factorization ∼ 1
3m3 flops.

If we use the above algorithm to compute the Cholesky
factorization and the solve Ax = b using the decomposition,
then the complete algorithm is backward stable. The computed
solution x̃ satisfies

(A + ∆A)x̃ = b,
‖∆A‖
‖A‖

= O(εmachine).

FJS MATH 612 14 / 36

GOING ITERATIVE

FJS MATH 612 15 / 36

Equation solving so far

Find a full QR decomposition of A and solve Rx = Q∗b.
Use Gaussian elimination, with or without partial pivoting.
At the end solve an upper triangular system.
(The previous method gives a PA = LU factorization for
free. This is practical for future uses of A.)
For a symmetric PD matrix, find a Cholesky factorization
A = R∗R = LL∗. Then solve two triangular systems.

All of these methods have complexity of order m3. They are
very intrusive to the matrix. Few of them take advantage of
special structural properties.

FJS MATH 612 16 / 36

Banded matrices

If a matrix A satisfies

aij = 0 whenever |i − j | > p

it is a p-banded matrices. When p = 0 this is just a diagonal
matrix. When p = 1 it is a tridiagonal matrices. The bandwidth
is 2p + 1.

If A is p-banded and we do not swap rows during Gaussian
elimination2, then the resulting upper triangular matrix is
banded as well. In fact A = LU, where L and U are banded
(with the same width).
For the exactly this reason, if A is Hermitian PD and banded, in
the Cholesky factorization, R is p-banded as well.

2because we can, and we have decided not to as well
FJS MATH 612 17 / 36

Large sparse matrices

There’s no precise definition of sparse matrices3, but here’s
something that ressembles a definition for the case I care
about:

A matrix m ×m is sparse when the number of non-zero entries
in each row of the matrix is O(mα) with α < 1.

A typical value in numerical PDEs are α = 0, so that the total
number of non-zero entries in a matrix os O(m). The cost of a
matrix-vector multiplication if O(m2). (Exercise. Compute the
exact number of flops.). The cost of a matrix-vector
multiplication for a matrix like in the definition is O(m1+α).

An here comes a digression on discretization of the Laplacian...
(pay attention!)

3at least no precise definition I know and believe in
FJS MATH 612 18 / 36

Redefining matrices and changing goals

Instead of the matrix A giving with its entries, we might have
been given:

a sparse representation of A (like in MATLAB’s sparse
construction)
an operator performing x 7→ Ax .

It is common to assume that we have an algorithm to multiply
by A or by some simple specific parts of A, like the diagonal
of A, A except its diagonal, the upper triangular part of A, etc.
Instead of looking for ‘exact’ solutions (meaning exact in exact
arithmetic was possible, approximate because of floating point
errors, and stability+conditioning issues), we might be happy
enough with x̃ such that

‖x̃ − x‖ ≤ tolerance.

FJS MATH 612 19 / 36

What is an iterative method

In an iterative method for the system Ax = b we build a
sequence xn such that xn → x = A−1b.

Because we do not know the solution, we have to be sure it
converges to the right solution (consistency of the method)
We want to be sure that the method converges.
We have to figure out when to stop. Typically

‖xn+1 − xn‖
‖xn+1‖

≤ tolerance

is taken as a stopping criterion. (Do not use the residual for
convergence ‖b − Axn+1‖ ≤ tolerance. The system might
be badly conditioned.

What we want:
If possible, the method should only use multiplication by
(parts of) A and simple non-intrusive manipulation of A.
If possible, the method should be fast.

FJS MATH 612 20 / 36

CLASSICAL ITERATIVE METHODS

FJS MATH 612 21 / 36

Today’s methods

Warning

Today’s methods are very old ones. They work for a quite
restricted class of matrices and are almost never used to solve
the systems, but as parts of larger algorithms.

All the methods today will share a fixed-point structure: to solve
Ax = b, we iterate

Mxn+1 = Nxn + f ,

where M has to be invertible, and the solution of Mx = d
should be easy (M is triangular or diagonal).

The three methods we’ll now see need aii 6= 0 for all i . That’s a
guarantee that we can apply the method, but it’s far from being
a guarantee for convergence.

FJS MATH 612 22 / 36

Matrix iterations

xn+1 = Bxn + c, x0 arbitrary.

If the spectral radius of B (maximum absolute value of its
eigenvalues) is less than one, then xn converges, always to
the same limit, independently of the choice of x0. (It
converges to the unique solution of (I − B)x = c. Why?)
If the spectral radius of B is larger than one (there’s an
eigenvalue with absolute value larger than one), then xn
DOES NOT converge with probability one (in the choice of
x0).
If the spectral radius of B is one, there are different
situations, and we will not try to characterize them.

FJS MATH 612 23 / 36

Jacobi’s discovery of parallelization

Write Ax = b as m separate equations
m∑

j=1

aijxj = bi , i = 1, . . . ,m

isolate the diagonal

aiixi = bi −
∑
j 6=i

aijxj , i = 1, . . . ,m

and iterate in parallel

aiix
(n+1)
i = bi −

∑
j 6=i

aijx
(n)
j , i = 1, . . . ,m

Warning

We will use n for the iteration counter and m for the size of the
system.

FJS MATH 612 24 / 36

Gauss-Seidel’s improved communication skills

In Jacobi’s method, the m scalar equations are solved in
parallel, and we have to wait for the next iteration to use the
computed values. In the GS method we proceed sequentially.
Instead of

aiix
(n+1)
i = bi −

i−1∑
j=1

aijx
(n)
j −

m∑
j=i+1

aijx
(n)
j , i = 1, . . . ,m

we work sequentially and update automatically

aiix
(n+1)
i = bi −

i−1∑
j=1

aijx
(n+1)
j −

m∑
j=i+1

aijx
(n)
j , i = 1, . . . ,m

FJS MATH 612 25 / 36

Jacobi vs Gauss-Seidel

Once again, we do not solve systems with these methods.
(Okay, there’s some very particular cases where these methods
are used.) They are used for other purposes.

Gauss-Seidel communicates updates faster.
Jacobi is parallel.
Gauss-Seidel gives a direction to the equations, from first
to last. (There’s a loss of symmetry. This is solved in the
next slide.)
There are counter examples where each of them is faster
than the other.

FJS MATH 612 26 / 36

Symmetric Gauss-Seidel

Sweep down:

aiix
(n+1/2)
i = bi −

i−1∑
j=1

aijx
(n+1/2)
j −

m∑
j=i+1

aijx
(n)
j , i = 1, . . . ,m

Sweep up:

aiix
(n+1)
i = bi −

i−1∑
j=1

aijx
(n+1/2)
j −

m∑
j=i+1

aijx
(n+1)
j , i = m, . . . ,1

(The 2m equations can be reduced to 2m − 2, because two of
them repeat the sae computation. Can you see which ones?)

FJS MATH 612 27 / 36

A joint presentation

Write
A = D − L− U

where D = diag(aii), L is strictly lower triangular, and U is
strictly upper triangular.

Jacobi

Dx (n+1) = (L + U)x (n) + b

Gauss-Seidel

(D − L)x (n+1) = Ux (n) + b

Symmetric Gauss-Seidel

(D − L)x (n+1/2) = Ux (n) + b

(D − U)x (n+1) = Lx (n+1/2) + b

FJS MATH 612 28 / 36

The symmetric GS method again

(D − L)x (n+1/2) = Ux (n) + b,
(D − U)x (n+1) = Lx (n+1/2) + b

x (n+1/2) = (D − L)−1Ux (n) + (D − L)−1b,
x (n+1) = (D − U)−1Lx (n+1/2) + (D − U)−1b

= (D − U)−1L(D − L)−1Ux (n)

+(D − U)−1L(D − L)−1b + (D − U)−1b
= Bx (n) + c

FJS MATH 612 29 / 36

ARNOLDI’S METHOD

FJS MATH 612 30 / 36

Krylov spaces: a definition and three properties

Let b ∈ Cm and A ∈ Cm×m. We consider the subspaces

Kn := 〈b,Ab,A2b, . . . ,An−1b〉 n ≥ 1.

Clearly
Kn ⊆ Kn+1, AKn ⊆ Kn+1.

1 If Kn = Kn+1, then Kn = Kn+1 = Kn+2 = . . .

2 If Kn = Kn+1, then AKn ⊆ Kn

3 If Kn = Kn+1, then A−1b ∈ Kn.

FJS MATH 612 31 / 36

Arnoldi’s method: what it does

Arnoldi’s method is the modified Gram-Schmidt method applied
to find an orthonormal basis of the Krylov space Kn.

〈b,Ab,A2b, . . . ,Aj−1b〉 = 〈q1, . . . ,qj〉

There are two differences with GS. Because of the particular
structure of the Krylov space, the incoming vector in the j-th
step is vj = Aj−1b = Avj−1. With the Krylov spaces the matrix to
which we apply GS does not exist. We build the vectors as we
go. However, there’s an even more relevant detail in the
implementation. It’s based in this equality (prove it!)

〈b,Ab,A2b, . . . ,Aj−1b,Ajb〉 = 〈q1, . . . ,qj ,Ajb〉
= 〈q1, . . . ,qj ,Aqj〉

FJS MATH 612 32 / 36

Towards Arnoldi

(This was modified GS, in case you
have forgotten.)

for j = 1 : n
v = aj
for i = 1 : j − 1

rij = q∗i v
v = v − rijqi

end
rjj = ‖v‖2
qj = 1

rjj
v

end

v1 = b
for j = 1 : n − 1

vj+1 = Avj
end
for j = 1 : n

v = vj
for i = 1 : j − 1

rij = q∗i v
v = v − rijqi

end
rjj = ‖v‖2
qj = 1

rjj
v

end

FJS MATH 612 33 / 36

Towards Arnoldi (2) – before and after

v1 = b
for j = 1 : n − 1

vj+1 = Avj
end
for j = 1 : n

v = vj
for i = 1 : j − 1

rij = q∗i v
v = v − rijqi

end
rjj = ‖v‖2
qj = 1

rjj
v

end

v1 = b
for j = 1 : n − 1

vj+1 = Avj
end
q1 = 1

‖v1‖2
v1

for j = 1 : n
v = vj+1
for i = 1 : j

hij = q∗i v
v = v − hijqi

end
hj+1,j = ‖v‖2
qj+1 = 1

hj+1,j
v

end

FJS MATH 612 34 / 36

Towards Arnoldi (3) – Arnoldi’s iteration (!)

q1 = 1
‖b‖2

b
for j ≥ 1 % count on the next

v = Aqj % the newcomer
for i = 1 : j

hij = q∗i v % not R anymore
v = v − hijqi

end
hj+1,j = ‖v‖2 % not R anymore; stop if zero
qj+1 = 1

hj+1,j
v

end

Aqj = h1jq1 + h2jq2 + . . .+ hjjqj︸ ︷︷ ︸
orth. proj. onto Kj

+hj+1,jqj+1

FJS MATH 612 35 / 36

A funny factorization – with a Hessenberg matrix

Aq1 = h11q1 + h21q2

Aq2 = h12q1 + h22q2 + h32q3

Aq3 = h13q1 + h23q2 + h33q3 + h43q4

...

A

 q1 q2 . . . qj



=

 q1 q2 . . . qj qj+1




h11 h12 h13 . . . h1j
h21 h22 h23 . . . h2j

h32 h33
. . . h3j

.
...

hj,j−1 hjj
hj+1,j


FJS MATH 612 36 / 36

