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The contents of these notes have been translated and slightly modified from a previous
version in Spanish. Part of the notation for the iterated kernels and many of the ideas
for the proof of Jordan’s Decomposition Theorems are borrowed from [1]. The flavor to
functional analysis (Riesz theory) is taken from [2]. Finally, notation has been adapted from
[3] to fit in what I was teaching in MATH 672 in the Fall 2013 semester.

1 Preliminary notions

Definition 1. Let A ∈ M(n;F), and let V be a subspace of Fn = Fnc . We say that V is
A−invariant if

Au ∈ V , ∀u ∈ V .

Examples. If λ is an eigenvalue of A, then ker(A − λI) = {u ∈ Fn : Au = λu} is
A−invariant. More generally

ker(A− λI)j is A−invariant ∀j.

Proof. If u ∈ ker(A− λI)j, then

(A− λ I)ju = 0 =⇒ 0 = A (A− λ I)ju
(∗)
= (A− λ I)jAu

=⇒ Au ∈ ker(A− λI)j.

To prove (*), we just have to notice that

(A− λ I)j =

j∑
i=0

(−λ)j−i
(
j

i

)
Ai,

and therefore A (A− λ I)j = (A− λ I)j A.

Definition 2. If A ∈M(n;F) and Fn = V⊕W, where V andW are A−invariant, we say
that Fn = V ⊕W is an A−invariant decomposition. The same definition can be extended
to

Fn = V1 ⊕ . . .⊕ Vk,
where Vj is A−invariant for all j.
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Example. If A is diagonalizable and λ1, . . . , λk are the distinct eigenvalues of A, then

Fn = ker(A− λ1I)⊕ . . .⊕ ker(A− λkI)

is an A−invariant decomposition. Also if

Avj = µjvj, ∀j and {v1, . . . , vn} is a basis for Fn,

then
Fn = span[v1]⊕ span[v2]⊕ . . .⊕ span[vn]

is an A−invariant decomposition.

The associated matrix. If Fn = V ⊕ W is an A−invariant decomposition, and we
construct a basis for Fn as follows:

v1, . . . , v`︸ ︷︷ ︸
basis for V

, v`+1, . . . , vn︸ ︷︷ ︸
basis for W

and we build the matrix

P =

 v1 . . . v` v`+1 . . . vn

 ,
then

P−1AP =

[
A`×` 0

0 An−`×n−`

]
In general, invariant decomposition produce block diagonal matrices. Note that if

P−1AP =


A1

A2

. . .

Ak


where Aj is a square matrix for all j, then: (a) the corresponding partition of the columns
of P creates an A−invariant decomposition of Fn in k subspaces; (b) the characteristic
polynomial of A is the product of the characteristic polynomials of the matrices Aj.

First goal. In a first step we will try to find a matrix P such that

P−1AP =


A1

A2

. . .

Ak


where

χAj(x) = (λj − x)mj λi 6= λj ∀i 6= j.

2



This will be possible for any matrix such that

χA(x) = (λ1 − x)m1 . . . (λk − x)mk m1 + . . .+mk = n.

We will have thus created an A−invariant decomposition

Fn = V1 ⊕ V2 ⊕ . . .⊕ Vk,

where dimVj = mj. From now on, we will restrict our attention to the case F = C. The
case where A is a real matrix whose characteristic polynomial has only real roots will
follow as a particular case.

2 Iterated kernels

Notation. From now on we will consider a matrix whose characteristic polynomial is

χA(x) = (λ1 − x)m1 . . . (λk − x)mk ,

with pairwise different roots {λ1, . . . , λk} with multiplicities mj ≥ 1.

Definition 3. Let A ∈M(n;C) and λ be an eigenvalue of A. The subspaces

Ej(λ) = ker(A− λ I)j, j ≥ 1,

are called iterated kernels. We denote E0(λ) = ker( I ) = 0.

Elementary properties.

(1) E1(λ) is the set of all eigenvectors associated to λ and the zero vector (which is
never considered an eigenvector).

(2) Ej(λ) ⊆ Ej+1(λ) for all j.

Proof. It follows from the following straightforward argument

(A− λ I)ju = 0 =⇒ (A− λ I)j+1u = 0.

(3) If E`(λ) = E`+1(λ), then E`+1(λ) = E`+2(λ). Consequently

E`(λ) = E`+1(λ) = E`+2(λ) = . . . .

Proof. Let u be such that (A− λ I)`+2u = 0 and define v = (A− λ I)u. Then

(A− λI)`+1v = (A− λI)`+2u = 0,

which implies that
v ∈ E`+2(λ) = E`+1(λ),

and therefore
(A− λI)`+1u = (A− λI)`v = 0.

This argument shows then that E`+2(λ) ⊆ E`+1(λ) ⊆ E`+2(λ).

(4) The spaces Ej(λ) are A−invariant.
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Not so elementary properties. The proofs for the following results will be given in
Section 3.

(5) For all j ≥ 1

dimEj+1(λ)− dimEj(λ) ≤ dimEj(λ)− dimEj−1(λ).

(6) Let λ1, . . . , λk be eigenvalues of A. Let j1, . . . , jk ≥ 1. Then, the following sum of
subspaces is direct:

Ej1(λ1)⊕ Ej2(λ2)⊕ . . .⊕ Ejk(λk).

In other words, the spaces Ej1(λ1), . . . , Ejk(λk) are independent.

(7) The maximum dimension of the iterated kernels Ek(λ) is the multiplicity of λ as a
root of the characteristic polynomial. In other words, for every eigenvalue λ, there
exists ` such that

E`(λ) = E`+1(λ), dimE`(λ) = mλ,

where mλ is the algebraic multiplicity of λ as a root of χA.

On the dimensions of the iterated kernels. Let

nj = dimEj(λ) = dim ker(A− λ I)j, j ≥ 0

(note that n0 = 0). The preceding properties imply that this sequence of integers satisfies
the following properties:

(1) 0 = n0 < n1 < . . . < n` = n`+1 = . . . ,

(2) n` − n`−1 ≤ n`−1 − n`−2 ≤ . . . ≤ n2 − n1 ≤ n1 − n0 = n1

(3) n` = mλ.

The sequence of iterated kernels is then

E0(λ) ⊂ E1(λ) ⊂ E2(λ) ⊂ . . . ⊂ E`(λ) = E`+1(λ) = . . .
dim : 0 = n0 < n1 < n2 < . . . < n` = n`+1 = . . .

A simple but important observation. If B = P−1AP , then

u ∈ ker(B − λI)j ⇐⇒ P u ∈ ker(A− λI)j.

Therefore, the dimensions of the iterated kernels are invariant by similarity transforma-
tions. This can be also explained in different words: the dimensions of the iterated kernels
depend on the operator and not on the particular matrix representation of the operator.
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Theorem 1 (First Jordan decomposition theorem). If

χA(x) = (λ1 − x)m1(λ2 − x)m2 . . . (λk − x)mk ,

then there exist integers `j such that

Cn = E`1(λ1)⊕ . . .⊕ E`k(λk)

and there is a change of basis such that

P−1AP =

 A1

. . .

Ak

 ,
where

χAp(x) = (λp − x)mp ∀p.
Furthermore, the dimensions of the iterated kernels of the submatrices Ap coincide with
the dimensions of the kernels Ej(λp) for the matrix A, that is,

dim ker(Ap − λpI)j = dim ker(A− λpI)j ∀j.

Proof. The first assertion is a direct consequence of properties (6) and (7). Taking bases
of the iterated kernels E`j(λj) and placing them as columns of a matrix P we reach a
block diagonal form.

Let us show that the dimensions of the iterated kernels of A1 coincide with the dimen-
sions of Ej(λ1). Let B = P−1AP . Since

u ∈ ker(B − λ1I)j ⇐⇒ P u ∈ Ej(λ1) ⊆ E`1(λ1) = span[p1, p2, . . . , pm1 ]

(pj are the column vectors of P ), then

ker(B − λ1I)j ⊆ span[e1, e2, . . . , em1 ]

(ej are the canonical vectors). This means that elements of ker(B − λ1I)j can only have
its first m1 entries non-vanishing. From that, it is obvious that

u ∈ ker(B − λ1I)j ⇐⇒ u =

[
v
0

]
, v ∈ ker(A1 − λ1I)j.

The same proof applies to all other eigenvalues.

Very relevant conclusion. Once the first Jordan Theorem has been proved, we can
restrict our attention to matrices whose characterstic polynomial is of the form (λ1 −
x)n, since this theorem allows us to separate the space into smaller subspaces where the
operator/matrix only involves one eigenvalue.

3 Proofs
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This section can be skipped in a first reading.

Property (5). For all j ≥ 1

dimEj+1(λ)− dimEj(λ) ≤ dimEj(λ)− dimEj−1(λ).

Proof. Let m = dimEj+1(λ)−dimEj(λ) and let us take independent vectors {v1, . . . , vm}
such that

Ej+1(λ) = Ej(λ)⊕ span[v1, . . . , vm].

This can be written in the following form:

v1, . . . , vm ∈ Ej+1(λ),

ξ1v1 + . . .+ ξmvm ∈ Ej(λ) ⇐⇒ ξ1 = . . . = ξm = 0.

Let now wi := (A− λ I)vi. It is easy to verify that

w1, . . . , wm ∈ Ej(λ),

ξ1w1 + . . .+ ξmwm ∈ Ej−1(λ) ⇐⇒ ξ1 = . . . = ξm = 0,

and therefore

dim span[w1, . . . , wm] = m (the vectors are independent),

span[w1, . . . , wm] ⊂ Ej(λ),

span[w1, . . . , wm] ∩ Ej−1(λ) = {0}.

Therefore dimEj(λ)− dimEj−1(λ) ≥ m.

Lemma 1. If p(A)u = 0 and q(A)u = 0, where p, q ∈ C[x], and we define r = g.c.d.(p, q),
then r(A)u = 0.

Proof. Both p and q have to be multiples of the minimal polynomial of u with respect to
A. Therefore r is a multiple of this same polynomial which implies the result. (Recall
that the minimal polynomial for a vector u with respect to a matrix A is the lowest order
monic polynomial p such that p(A)u = 0 and that if q(A)u = 0, then p divides q.)

Property (6). Let λ1, . . . , λkbe pairwise different eigenvalues of A. Let j1, . . . , jk ≥ 1.
The the following sum of spaces is direct:

Ej1(λ1)⊕ Ej2(λ2)⊕ . . .⊕ Ejk(λk).

Proof. Let u1, . . . , uk such that

u1 + u2 + . . .+ uk = 0, ui ∈ Eji(λi).

Then

(A− λ1 I)j1u1 = 0,

(A− λ2 I)j2 . . . (A− λk I)jku1 = −(A− λ2 I)j2 . . . (A− λk I)jk(u2 + . . .+ uk) = 0.
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Since

g.c.d.

(
(x− λ1)j1 , (x− λ2)j2 . . . (x− λk)jk

)
= 1,

then u1 = 0. Proceeding by induction we prove that uj = 0 for all j. This proves that
the subspaces are independent.

Property (7a). For all j
dimEj(λ) ≤ mλ,

where χA(x) = (x− λ)mλq(x) with q(λ) 6= 0.

Proof. Let P be invertible such that its first m columns form a basis of Ej(λ) (m =
dimEj(λ)). Therefore

P−1AP =

[
Am Cm
0 Bm

]
, Am ∈M(m;C).

If Am v = µ v, then

P−1AP

[
v
0

]
= µ

[
v
0

]
=⇒ AP

[
v
0

]
= µP

[
v
0

]
.

Therefore

w = P

[
v
0

]
∈ E1(µ) ∩ Ej(λ).

If µ 6= λ, then E1(µ) ∩ Ej(λ) = {0}, so w = 0 and v = 0. This shows that χAm(x) =
(λ− x)m. Since

χA(x) = χAm(x)χBm(x) = (λ− x)mχBm(x) = (λ− x)mλq(x), q(λ) 6= 0

it follows that m ≤ mλ.

Property (7b). If E`+1(λ) = E`(λ), then

dimE`(λ) ≥ mλ.

Proof. Let m = dimE`(λ). We take P as in the previous proof, so that

P−1AP =

[
Am Cm
0 Bm

]
= Ã,

where Am ∈M(m;C). We are going to see that Bm cannot have λ as an eigenvalue.
Let us recall that for all j

u ∈ ker(Ã− λ I)j ⇐⇒ P u ∈ ker(A− λ I)j.

Therefore

ker(Ã− λ I)` = ker(Ã− λ I)`+k, ∀k
ker(Ã− λ I)` = span[e1, . . . , em].
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The latter identity implies that the first m columns of (Ã − λ I)` vanish. We can then
write

(Ã− λ I)` =

[
(Am − λ I)` Ĉm

0 (Bm − λ I)`

]
=

[
0 Ĉm
0 (Bm − λ I)`

]
.

Now, if (Bm − λI)v = 0, then

(Ã−λ I)2`
[

0
v

]
=

[
0 Ĉm
0 (Bm − λ I)`

] [
Ĉmv

(Bm − λ I)`v

]
=

[
0 Ĉm
0 (Bm − λ I)`

] [
Ĉmv

0

]
= 0

which implies

(Ã− λ I)`
[

0
v

]
= 0

and therefore v = 0.

Nota. Properties (7a) and (7b) imply Property (7). However, Property (7b) is enough
to show that dimE`(λ) = m(λ). The reason for this is that Property (6) implies

n ≥ dimE`1(λ1) + . . .+ dimE`k(λk) ≥ m1 + . . .+mk = n

which forces all the inequalities to be equalities.

4 Jordan blocks and Jordan matrices

Definition 4. A Jordan block of order k associated to a value λ is a k × k matrix of the
form

Jk(λ) :=


λ 1

λ 1

λ
. . .
. . . 1

λ

 .

Properties.

(1) The characteristic polynomial of Jk(λ) is (λ− x)k. Moreover,

dim ker(Jk(λ)− λI) = 1.

(2) The dimensions of the iterated kernels for Jk(λ) are:

dim ker(Jk(λ)− λI)j =

{
j, j = 1, . . . , k
k, j ≥ k

}
= min(k, j).
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Proof. Note that

Jk(λ)− λI =


0 1

0 1

0
. . .
. . . 1

0


and take increasing powers of this matrix, noticing how the rank reduces by onw
with each power. Otherwise, note that n1 = 1 (the dimension of the space of
eigenvectors is one) and by Property (5) of the iterated kernels the dimensions can
only increase one by one until it reaches k.

Definition 5. A Jordan matrix associated to a value λ is a block diagonal matrix whose
blocks are Jordan blocks for the value λ:

Jk1(λ)
Jk2(λ)

. . .

Jkr(λ)


A general Jordan matrix is a block diagonal matrix, whose blocks are Jordan matrices
associated to different values. Equivalently, it is a block diagonal matrix whose blocks are
Jordan blocks.

5 Two combinatorial problems

Objetivo. We will next show how to establish a one-to-one correspondence between the
different possibilities for dimensions of iterated kernels for an m×m Jordan matrix (with
a single eigenvalue) and the possibilities of setting up the Jordan boxes until we fill the
m×m space.

Problem (P). Find a sequence of integers satisfying

(a) 0 = n0 < n1 < . . . < n` = n`+1 = . . . ,

(b) n` − n`−1 ≤ n`−1 − n`−2 ≤ . . . ≤ n2 − n1 ≤ n1 − n0 = n1

(c) n` = m.

Problem (Q). Find a sequence of non-negative integers q1, q2, . . . , q`, . . . such that

(a) q`+1 = q`+2 = . . . = 0

(b) q1 + 2 q2 + 3 q3 + . . .+ ` q` = m
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Remark. Before showing how Problem (P) and Problem (Q) are related, let us look
ahead and explain what they are going to mean in the context of Jordan matrices. We
also give the interpretation for the solutions of an intermediate problem:

• {nj} will be the dimensions of the iterated kernels;

• {pj} will be the number of Jordan blocks of size j × j or higher;

• {qj} will be the number of j × j Jordan blocks.

The relation between both sequences will be done without taking into account what is
the value of ` where the solution of (P) stagnates and where the one of (Q) takes its last
non-zero value. This value will be however the same in both sequences. �

From (P) to (Q). Given a solution to (P), we define

pj = nj − nj−1, j ≥ 1.

This sequence satisfies

0 = . . . = p`+1 < p` ≤ p`+1 ≤ . . . ≤ p1 = n1.

We next define
qj = pj − pj+1, j ≥ 1,

so that q` = p` and qj = 0 for all j > `. The sequence {qj} is a solution to (Q).

From (Q) to (P). Given a solution to (Q), we define

pj = qj + qj+1 + . . .+ q`, j = 1, . . . , `,
pj = 0 j ≥ `,

and then define a new sequence using a recurrence{
n0 = 0
nj = pj + nj−1, j ≥ 1.

Then {nj} is a solution of (P). This shows that there is a bijection between solutions of
(P) and (Q).

Theorem 2. Let {nj} be a solution to (P) and let {qj} be the associated solution to (Q).
Then the m×m Jordan matrix associated to the value λ, built with

qj blocks of size j × j for all j

satisfies
dimEj(λ) = nj, j ≥ 0.
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Proof. Let us consider the Jordan matrix constructed as explained in the statement. Since
the matrix is block diagonal, it follows that

dimEj(λ) = q` dim ker(J`(λ)− λI)j + q`−1 dim ker(J`−1(λ)− λI)j

+ . . .+ q1 dim ker(J1(λ)− λI)j

= q` min(j, `) + q`−1 min(j, `− 1) + . . .+ q1 min(j, 1)

= j (q` + q`−1 + . . .+ qj+1) + jqj + (j − 1)qj−1 + . . .+ 2q2 + q1

= j(p` + p`−1 − p` + . . .+ pj+1 − pj+2)

+j(pj − pj+1) + . . .+ 2(p2 − p3) + (p1 − p2)
= j pj+1 − j pj+1 + pj + pj−1 + . . .+ p1

= nj.

This proves the result.

Conclusions.

(1) For any solution of problem (P), there exists an m×m Jordan matrix with a single
eigenvalue such that

dimEj(λ) = nj, ∀j.

(2) Consequently, given possible configurations of the dimensions of the iterated kernels
associated to all eigenvalues, there exists a matrix (a Jordan matrix actually) whose
iterated kernels have the given dimensions.

(3) Two essentially different Jordan matrices (that cannot be obtained by permutation
in the order of the blocks) are not similar.

Proof. The block-configuration (how many blocks of each size for each eigenvalue)
determines univocally the dimensions of the iterated kernels (different block config-
urations imply different dimensions of the kernels). However, the dimensions of the
iterated kernel do not vary under similarity transformations.

6 Existence of a Jordan canonical form

An observation. If

P−1AP =

[
Jk(λ) ×

0 ×

]
and u1, . . . , uk are the first columns of P , then

Au1 = λu1

Au2 = λu2 + u1
...

Auk = λuk + uk−1

so for all j ≥ 2
uj−1 = (A− λI)uj.
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Lemma 2. If V is a subspace satisfying

Ej−1(λ)⊕ V ⊆ Ej(λ)

and W = (A− λI)V = {(A− λI)u : u ∈ V}, then

Ej−2(λ)⊕W ⊆ Ej−1(λ), dimW = dimV .

Proof. There are three things to check: (a) W ⊂ Ej−1(λ), which is quite obvious, since

u ∈ Ej(λ) =⇒ (A− λI)u ∈ Ej−1(λ);

(b) W ∩ Ej−2(λ) = 0, since if v ∈ W (so v = (A− λI)u, for some u ∈ V), then

(A− λI)j−2v = 0 =⇒ (A− λI)j−1u = 0 =⇒ u ∈ V ∩ Ej−1(λ) = 0;

(c) if u ∈ V , then

(A− λI)u = 0 =⇒ u ∈ E1(λ) ∩ V ⊆ Ej−1(λ) ∩ V = 0,

so linear independence is preserved by multiplication by (A− λI).

The proof of Theorem 3 is quite technical. It can be skipped in a first reading.

Theorem 3 (Second Jordan decomposition theorem). Every m ×m with characteristic
polynomial (x − λ)m is similar to a Jordan matrix associated to the value λ. Moreover,
the dimensions of the Jordan boxes are given by the coefficients {qj} associated to the
dimensions {nj} of the iterated kernels.

Proof. Let E`(λ) = Cm be the first iterated kernel of maximum dimension. Let V` = V0
`

tal que
E`(λ) = E`−1(λ)⊕ V0

` ,

so that dimV0
` = n` − n`−1 = p` = q`. Using Lemma 2 above

E`−1(λ) = E`−2(λ)⊕ (A− λI)V0
` ⊕ V0

`−1︸ ︷︷ ︸
V`−1

,

with
dimV0

`−1 = (n`−1 − n`−2)− dimV0
` = p`−1 − p` = q`−1 ≥ 0.

Likewise

E`−2(λ) = E`−3(λ)⊕ (A− λI)V`−1 ⊕ V0
`−2︸ ︷︷ ︸

V`−2

=

= E`−3(λ)⊕ (A− λI)2V0
` ⊕ (A− λI)V0

`−1 ⊕ V0
`−2,
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with
dimV0

`−2 = q`−2.

Proceeding succesively, we can build a partition of E`(λ)

E`(λ) = V0
` ⊕ (A− λI)V0

` ⊕ . . . ⊕ (A− λI)`−2V0
` ⊕ (A− λI)`−1V0

`

⊕ V0
`−1 ⊕ . . . ⊕ (A− λI)`−3V0

`−1 ⊕ (A− λI)`−2V0
`−1

...
...

⊕ V0
2 ⊕ (A− λI)V0

2

⊕ V0
1

so that,
dimV0

j = qj, j = 1, . . . , `.

Note that we can decompose E`()λ) in two different ways:

E`(λ) = V` ⊕ V`−1 ⊕ . . .⊕ V2 ⊕ V1 =W` ⊕W`−1 ⊕ . . .⊕W2 ⊕W1,

where

Vj = V0
j ⊕ (A− λI)V0

j+1 ⊕ . . .⊕ (A− λI)`−jV0
` (add by columns)

and
Wj = V0

j ⊕ (A− λI)V0
j ⊕ . . .⊕ (A− λI)j−1V0

j (add by rows)

We next build a basis for E`(λ) in the following form. If V0
j 6= {0}, we start

{uj,1, . . . , uj,qj} basis for V0
j .

We then create sequences of j vectors for each of the above vectors. If u is any of them,
we define

v1 = (A− λI)j−1u = (A− λI)v2 ∈ (A− λI)j−1V0
j

v2 = (A− λI)j−2u = (A− λI)v3 ∈ (A− λI)j−2V0
j

...

vj−1 = (A− λI)u = (A− λI)vj ∈ (A− λI)V0
j

vj = u, ∈ V0
j ,

so that
Av1 = λv1, Avk = vk−1 + λvk, k = 2, . . . , j.

We thus obtain a basis for

Wj = (A− λI)j−1V0
j ⊕ . . .⊕ (A− λI)V0

j ⊕ V0
j .

If we change basis to this new basis (collect the corresponding basis for each row of the
large decomposition above, noting that some rows might be zero), we have a Jordan
matrix with qj blocks of size j × j for each j.
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Theorem 4. Every matrix is similar to a Jordan matrix (its Jordan canonical form). The
Jordan form is unique up to permutation of its blocks, and it is the only general Jordan
matrix such that the dimensions of the iterated kernels for all the eigenvalues coincide
with those of A.

Proof. Use the First Jordan Theorem to separate eigenvalues, and then use the construc-
tion of the second theorem.

Corollary 1. The similarity class of a matrix is determined by the characteristic poly-
nomials and the dimensions of all the iterated kernels (for all roots of the characteristic
polynomial). Matrices with different Jordan forms are not similar.

7 Additional topics

7.1 Cayley–Hamilton’s Theorem

Theorem 5. For every matrix
χA(A) = 0.

Proof. A simple form of proving this theorem is using the Jordan form. Note that there
are other proofs using much less complicated results. Let J be the Jordan form for A.
Since χJ = χA, we only need to prove that χJ(J) = 0. Hoever

χJ(J) =


χJ(Jk1(λ1))

χJ(Jk2(λ2))
. . .

χJ(Jkr(λr))


and on the other hand

(Jk(λ)− λI)k = 0,

which proves the theorem.

Another proof. It is possible to prove this same result using the First Jordan decom-
position theorem. Using this theorem and the fact that

p(P−1AP ) =


p(A1)

p(A2)
. . .

p(Ak)

 ,
it is enough to prove the result for matrices with only one eigenvalue. Now, if the charac-
teristic polynomial of A is (x−λ)n, there exists ` ≤ n such that E`(λ) = ker, (A−λI)` =
Cn, which implies that (A− λI)` = 0 with ` ≤ n. �
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Some comments. The minimal polynomial for A is the lowest degree monic polynomial
satisfying Q(A) = 0. Assume that

χA(x) = (λ1 − x)m1 . . . (λk − x)mk .

Since the minimal polynomial for A and its Jordan form J are the same, it is easy to see
that if for every λj we pick the minimum `j such that

dimE`j(λj) = mj,

then the minimal polynomial is

(x− λ1)`1 . . . (x− λk)`k .

Another simple argument shows then that the following statements are equivalent:

(a) the matrix is diagonalizable

(b) the Jordan form of the matrix is diagonal (all blocks are 1× 1)

(c) all iterated kernels have maximum dimension

E2(λ) = E1(λ), ∀λ eigenvalue of A.

(d) the minimal polynomial has simple roots.

7.2 The transposed Jordan form

In many contexts it is common to meet a Jordan form made up of blocks of the form
λ
1 λ

. . . . . .

1 λ

 ,
that is, with the 1s under the main diagonal. If we have been able to get to the usual
Jordan form, we only need to reoder the basis to change to this transposed form, namely,
if the vectors

u1, u2, . . . , up

correspond to a p× p block associated to λ, then the vectors

up, up−1, . . . , u1

give the same block with the one elements under the main diagonal.

Corollary 2. Every matrix is similar to its transpose.

Proof. A simple reordering of the basis shows that every Jordan matrix is similar to its
transpose. Also, the tranpose of a matrix is similar to the transpose of its Jordan form.
This finishes the proof.
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7.3 The real Jordan form

If A ∈M(n;R), λ = α+βı (with β 6= 0) is an eigenvalue and we have the basis for E`(λ)
giving the Jordan blocks for λ, then we just need to conjugate the vectors of the basis to
obtain the basis giving the Jordan blocks for λ = α− βı. The reason is simple:

u ∈ Ej(λ) ⇐⇒ u ∈ Ej(λ)

This means that the configuration of Jordan blocks for λ and λ are the same.
If u1, . . . , up are the basis vectors associated to λ = α + βı (with β 6= 0), for a basis

leading to Jordan form, then u1, . . . , up can be taken as the vectors associated to λ. We
can then take

v1 = Reu1, v2 = Imu1

v3 = Reu2, v4 = Imu2
...

v2p−1 = Reup, v2p = Imup

(Re and Im denote the real and imaginary part of the vector). With these vectors, the
blocks corresponding to λ and λ mix up, producing bigger blocks with real numbers. For
instance [

α + βı 1
0 α + βı

]
[
α− βı 1

0 α− βı

]
 7−→


α β 1 0
−β α 0 1
0 0 α β
0 0 −β α


In this way, when a real matrix has complex eigenvalues, we can restrict our bases to have
real components and work with block-based Jordan blocks

Jk(λ, λ) :=


Λ I2

Λ
.. .
. . . I2

Λ

 , Λ :=

[
α β
−β α

]
, I2 :=

[
1 0
0 1

]

7.4 Symmetric matrices

Theorem 6. Every real symmetric matrix is diagonalizable.

Proof. Asssume that A ∈ M(n;R) satisfyes ATr = A. Let Au = λu, with u ∈ Cn and
λ ∈ C. Then

λ ‖u‖2 = uTrAu = (Au)
Tr
u = λ‖u‖2,
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which proves that λ is real. We now only need to prove that E2(λ) = E1(λ). This is a
consequence of the following chain of implications:

u ∈ E2(λ) =⇒ (A− λI)2u = 0

=⇒ uTr(A− λI)2u = 0

=⇒ ((A− λI)u)Tr((A− λI)u) = 0

=⇒ ‖(A− λI)u‖2 = 0

=⇒ u ∈ E1(λ).

8 Exercises

1. (Section 1) Show that if BA = AB, then kerB and rangeB are A−invariant.

2. (Section 1) Let V be A−invariant and let W be such that Fn = V ⊕W . Show that
A is similar to a block upper triangular matrix. (Hint. Take a basis of Fn composed
of vectors of V followed by vectors of W .)

3. (Section 1) Let A be such that

P−1AP =


2 1

2 1
2 1

2


and let {p1, . . . , p4} be the columns of P . Show that span[p1], span[p1, p2] and
span[p1, p2, p3] are A−invariant.

4. (Section 2) We can define the iterated ranges as follows

Rj(λ) = range(A− λI)j, j ≥ 1

with R0(λ) = range(I) = Cn. Show that

(a) Rj+1(λ) ⊆ Rj(λ) for all j.

(b) If R`+1(λ) = R`(λ), then R`+2(λ) = R`+1(λ). (Hint. This result can be proved
directly or using the equivalent result for the iterated kernels.)

(c) dimRj+1(λ)− dimRj(λ) ≥ dimRj(λ)− dimRj−1(λ).

If R`+1(λ) = R`(λ), what is the dimension of this subspace?

5. (Section 4) Let A be such that

P−1AP = Jn(λ)

and let {p1, p2, . . . , pn} be the column vectors of P .
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(a) Show that pj ∈ Ej(λ).

(b) Show that (A− λI)j−1pj = p1.

(c) Use the previous results to find the minimal polynomial of pj.

(d) Use (c) to find the minimal polynomial of A.

6. (Sections 5 and 6) In a 12-dimensional space, we let

q1 = 2, q2 = 0, q3 = 2, q4 = 1, qj = 0 ∀j ≥ 5.

(This corresponds to a Jordan matrix with two 1× 1 blocks, two 3× 3 blocks and
one 4× 4 blocks.) What is the associated solution of Problem (P)? In other words,
what are the dimensions of the iterated kernels Ej(λ) for a matrix with the Jordan
structure given above?

7. (Section 6) Let A be such that

χA(x) = (2− x)3(4− x)2.

List all possible Jordan forms for A. List the associated minimal polynomial. (Hint.
It is easy to find the minimal polynomial for all the vectors in the basis that leads
to the Jordan form. The l.c.m. of the minimal polynomials for the vectors in any
basis is the minimal polynomial for the matrix.)

8. (Section 6) Let A be such that

χA(x) = (3− x)4(2− x)2 and minPA(x) = (x− 3)2(x− 2)2.

How many possible Jordan forms can A have?

9. (Section 6) Let A be such that

χA(x) = (2− x)6.

Write down all possible Jordan forms for A. For each of them, list the dimensions
of the iterated kernels and the minimal polynomial of the matrix.

10. (Section 7) Prove that every complex Hermitian matrix has only real eigenvalues
and is diagonalizable. (Hint. Instead of transposing, use conjugate transposition in
the proof of Theorem 6.)
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