NAME:

MATH 672: Vector spaces

Fall’l3 Final exam Part 1/2 Partial solutions

1. (15 points) Let V be a finite dimensional space and T € £(V). Show that

x7(0) =0 = minP7(0) =0 = detT = 0.

Since x7(A) = det(T" — AI), it is clear that det T" = x7(0), which proves that
x7(0) =0 = detT = 0.

On the other hand x7(0) = 0 if and only if A = 0 is an eigenvalue of T, if and only if A =0
is a root of the minimal polynomial (all eigenvalues are roots of the minimal polynomial and
viceversa).

2. (20 points) Consider the n x n matrix

(a) Compute minP 4.
A simple way consists of computing the powers (A — pI)* and see that they only vanish
when n = k. Since xa(xz) = (u — x)", this proves that minP4(z) = (z — ). In a
different way, we can see that

(A—ul)eg =0, (A—pl)ex =e, (A—pul)e, =en_1.

This proves that minP 4., (v) = (z — p)". (It has to be of the form (z — u)* because
of the characteristic polynomial.) Since the minimal polynomial for A is the l.c.m. of all
minimal polynomial for all vectors, minP 4(x) = (z — u)™.

(b) Find a vector v € F} such that minP 4, = minP 4.
The vector v = e, satisfies this property as shown in (a).

(c) Assuming that p # 0, find an explicit formula for A=! and justify it. (Hint. By
checking the lowest dimensional cases, it is easy to guess a general formula.)
We can write

,U,il _M72 M73 (_l)nflufn
pt —p?
-1 _ . _
A7l = ul . s
. _M_z
ul




This is better described with the matrix

[0 1
0 1
E= =A—pul
0 1
Then
A=y T — B B — L () E

The sum ends at E™ 1, since E™ = 0. But then

AA™Y = (W +E)p = p?E4+p3E* + . 4+ (=) e
T — M—IE + ,U'_2E2 - (_1)n—1Mn—1En—1
+ M—IE o M_2E2 o+ (_1)n—lun—1En—1
= 1.

Another option is to check that AA™! = I by actually multiplying these matrices.

(d) Compute minP 4-1.
From (c) it follows that x 4-1(z) = (u~" —x)™. One easy way to see whi minP 41 (z) =
(x — =)™ and not a lower order power is to note that

1

Ay T =T —p A = (- A) AL

This clearly shows that (A=! — u~11)¥ = 0 if and only if (A — uI)* = 0 which is true for
k > n. Another option is to realize that e, has an n degree minimal polynomial w.r.t.
A~!. Another option uses the formula for the inverse to notice that

A—l o M—II — _M_2E+M_3E2 4+ (_1)n_1ﬂ_nEn_1~

The k—th power of this matrix is a linear combination of powers of E starting at E*.
FOr k < n this is a non-zero matrix. For k > n, this is zero.

3. (10 points) In CZ, we consider the Euclidean (dot) inner product,
(u,v) = Zﬁjuj.
J

Let now q1,...,qx € C? and let Q@ € M(n x k;C) be the matrix whose columns are the
vectors {g;}.

(a) Show that {qi,...,qr} is an orthonormal set if and only if Q*Q = Ij.
It is simple to see that if A = Q*Q, then a;; = (¢;,¢;) = ¢/ qj. The result is then obvious.

(b) If k = n, show that {q1,...,¢,} is an orthonormal set if and only if Q* = Q.
By (a), the set is orthonomrmal if and only if Q*Q = I,,. However, now @ is square.
Therefore Q*Q = I,, if and only if @ is invertible and Q! = Q*. (A square matrix is
invertible if and only if it has a left or right inverse. That sided inverse is the inverse.)



4. (10 points) In R3[z], we consider the inner product

1
(p,q) = /0 p(a)q(z)dz.
Let then
Hi={peRafa] : p(1) =0} Ho={p€Rala] : /(1) =0}

(a) Find an orthonormal basis for H; N Hz. (Show how to compute everything, but do
not show all details in computation of integrals.)
A basis for H1 N Hs is
{1 -2z +2%2—3z+ 2%}

Another easy one is {(1 — z)2,(1 — x)3}. Let py =1 — 22 + 22 and py = 2 — 3z + 5.
Then we start the Gram-Schmodit process doing

@i=p1, |@al>=%  and we defineqy = V5q:.
We then define

G2 = p2 — (P2, q1)q1 = p2 — (P2, q1)5q1 = p2 — %m =3 — %3332 + %90 — %~

Finally
1G2]1* = 55 = 6\% and we define o = v/252 Go.

The {q1,42} is an orthonormal basis for H; N Ha.

(b) Find the orthogonal projection of p(x) = 22 onto H!' N H?2.
We just need to compute
mr? = (@ q)q + (@7 q2)e

= (2%,§)5q1 + (v*, G2, )252 o

_ 143,592 17, _ 3
= 3T+ ¥ 57~ 10

5. (15 points) Let H be a finite dimensional inner product space.
(a) Give a direct proof of the following result:

range(T) = (ker T%)*.

For any subspace W, we can show that W+ = W. Then we only need to show that
(range(T)* = ker T*.
However,

T*u =0 (T*u,v) =0 Yov

<~
— (u,Tv)y=0 Yov
<— (u,w)=0 VYw € range(T).



(b) Show that if W is a subspace of H, then
dimW + dimW* = dimH.
This follows from the equality W @ W+ = . We first show that the sum is direct by
showing that WU W+ = {0}, which follows from
wveWNWt = wulu = u=0.

Next, if u € H and myu is the orthogonal projection of u onto W, then u — myu € W+,
and this proves that W 4+ W+ = H.

(¢) Show that
using the previous results.
This one is easy now:

p(T) = dimrange(T")
= dim H — dim(rangeT)* (by (b))

= dimH — dim ker 7™ (by (a))
=dimH —v(T")
= p(17).

6. (15 points) In Rs[z], we consider the following functionals
L) :
(pij) = ﬁp (1)7 J =0,1,2,3,
the canonical basis e = {1,z, 72 23} and its dual basis e* = {e, e}, €3, €5}

(a) Show that q* = {tg, 11,12, 93} is a basis for Rs[z]*.
Let

p" = cotbo + c1yr + catpa + cz1p3 = 0.
Then

This implies that ¢g = ¢; = ¢o = ¢3 = 0 and the set q* is linearly independent. Since
dim R3[z|* = dimRg[z] = 4, it is a basis.

(b) Write the matrix for the change of basis from e* to q*.
For any functional p*

Pt = Z(ej,p*)e;f = (1,p")el + (z,p")e} + (22, p")es + (23, p*)el.
J



()

If we apply this to the elements of g* we obtain the elements of the columns of the matrix
for the change of variables from q* to e*. These computations are implicit in (a). The
matrix is

1000
1100
1 210
1 3 31

Its inverse is the matrix that we are looking for:

10 0 O
-1 1 0 0
P= 1 -2 1 0
-1 3 =31

Using the result of (b), find the coefficients of the decomposition
3
e5 = Z cj;.
j=0

These coefficients are in the third column of P in (b). Therefore ea = 1p3 — 3¢3.

7. (15 points) In M(n;R) we consider the inner product

<A, B> = Z aijbij = trace(BTTA)

]

and the operator TA = AT".

(a)

(b)

Show that T is self-adjoint.
This follows from this simple argument

<A, ATT> == Zaijaﬂ == Zaﬂaij - <ATT,A>‘
4,3 .3

Give a direct argument (no characteristic polynomial involved), to show that the only
possible eigenvalues of T" are +1.
Assume that AT" = M\A. Therefore

A:(ATT‘)TT:()\A)TT:)\ATT:)\QA

or (A2 —1)A = 0. The only two possible roots are A = +1.

Use these facts and the spectral theorem to prove that M(n;R) = H1 & H_1, where
H; is the set of symmetric matrices and H_; is the set of skew-symmetric matrices,
and that the sum is orthogonal.

The set ker(T + I) is the set of skew-symmetric matrices. The set ker(7 — I) is the set
of symmetric matrices. (This follows from the definition of T'.) Eigenvectors for different
eigenvalues are orthogonal because T is selfadjoint by (a). Also T is diagonalizable
because it is selfadjoint, and its only eigenvalues are £1 by (b). Then, we can build an
orthonormal basis of eigenvectors, that is, of symmetric and skew-symmetric matrices.



8. (20 points) Let T € L(H) be a selfadjoint operator on a complex inner product space
H, and let P € Rlz]. Show that P(T) is also selfadjoint. If 7" is normal, is also P(T')

normal?
Let P(z) = >, a;jz? with a; € R. A simple computation (induction) shows that T* is
selfadjoint for all k. Then

v) = Zaj(Tju v Zaj u, T?v) Za]T] P(T)v).
J
If T is normal, we can actually have complex coefficients and

T*ZaTﬂ ZaJT*TJ ZOLT]T* (T)T*,

where we have used that 7*T7 = T7T*, which can be proved by induction.



NAME:

MATH 672: Vector spaces

Fall’13 Final exam Part 2/2 Partial solutions

1. (20 points) Define:

(a) Subspace of a vector space

It is a non-empty subset of the vector space that is closed by addition and scalar multi-
plication.

(b) Linear operator between two vector spaces

An operator T : V — W, between two vector spaces over the same field, is linear when
T(avy + bvy) = aTwvy + bTv,y Yoi,v2 €V, Va,beT.

(c) Adjoint of a linear operator between two vector spaces
Given a linear operator T : V — W, its adjoint is the operator T% : W* — V* such that

(Tv,w*) = (v, T"w") Yo eV, Yw* € W*.

(d) Adjoint of a linear operator in an inner product space

The adjoint of 7' : H — H (where H is an inner product space equipped with an inner
product (-,-)) is the only operator T* : H — H satisfying

(Tu,v) = (u, T*v) Vu,v € H.

2. (20 points) Let V and W be vector spaces over F with dimV = 4 and dim)V = 6. Let
TeL(V,W).
(a) What is v(T*) — v(T)?
Using the relation between rank and nullity and the fact that p(T") = p(T*), we prove
that

v(T*) =dimW — p(T*) = 6 — p(T™)
=6 —p(T) =6 — (dimV —v(T)) =2+ v(T),

so v(T™) —v(T) = 2.

(b) Show that T' is not surjective.
Since p(T') = 4 — v(T') < 4, it is not possible that p(T') = 6 and therefore T" is not
surjective.

(¢) Show that 7™ is not injective.
Since v(T*) =6 — p(T*) =6 — p(T) > 2 (p(T) < dim W < 4), it is clear that T* has
at least a two-dimensional kernel.



(d) If T is injective, what is its rank?
If v(T) =0, then p(T") = dimV — v(T) = 4.

3. (25 points) Let H be a complex inner product space and T' € L(H).

(a) Show that T*T is self-adjoint.
Directly, we can compute (T*T)* = T*T** = T*T, using that (AB)* = B*A* and
A™ = A. We can also note that

(T*T) u,v) = (u, T*Tv) = (Tu, Tv) = (T*Tu,v) Vu,v € H.

(b) Show that ker(7*T) = ker T'. (Hint. (I""Tu,u) = (Tu,Tu).)
If Tu =0, then T*Tu =T*0=0. If T*Tu = 0, then

0= (T*Tu,u) = (Tu, Tu) = || Tul?,

so Tu = 0.

(c) Show that the operators (T + T*) and (T — T*) are self-adjoint.
We can use the same arguments as in (a) plus (aT)* = aT™. Also,

(3(T+T")u,v) = g {u, (T* +T)v) = (u, 5(T +T})
and

(&7 = T")u,0) = & . (T = T)) = {u, £(T* = T)o) = (u, &(T "))

for all u,v € H.

4. (20 points) Let V; and Vs be subspaces of a seven dimensional vector space V and assume
that dim); = 3 and dimV, = 4. Tabulate all possibilities of dimensions of V; NV, and
relate them to all possibilities of dimensions of V| + V,. Is the sum direct in any of the
cases?

We use the formula
dim (V1 + Vo) +dim (V1 N Vs) =dimV; +dim Vy = 7.
and note that dim (V3 N'V,) < dimV; = 3. Therefore we can have

dim(V; +Vs) dim(V; NV,) Notes
7 0 VidVy =V

6 1
5) 2
4 3 Vi C Vo, Vi+ Vo=V
5. (30 points) Let T' € L(V, W) be surjective and

dimV =n > m = dim(W).

Let v. = {v1,...,v,} be a basis of V, where kerT' = span[v,t1,...,v,]. Finally, let
w = {wi,...,wy} be given by

wj = Tvj, j=1...,m.



(a) Show that w is a basis for W.
We only need to show linear independence. If Zj cjw; = 0, then using linearlity of T'

m m m
0= Z cjTvj = T(Z cjvj) = Z cjvj € ker T' = span[vp 1, - - ., Un).
j=1 j=1 j=1

By linear independence of the vectors {v1,...,v,} it follows that ¢; = 0 for all j.
(b) Consider now the operator U € LV, V) given by

Uwj = vj, 7=1,....m.

Show that TUw = w for all w € W.
By definition of w; and U

TUwj =Tvj = w;j j=1...,m.

Since {w1,...,wy} is a basis of W, it follows that
TUw = TU(Z cjw;) = Z c;iTUw; = chwj = w.
J J J

(c) Show that U is injective but not surjective.
If Uw = 0, then 0 = TUw = w, so ker U = {0}. The operator U cannot be surjective
because p(U) = dimW —v(U) <m <n =dimV,

(d) Compute UTw; for all j. (Hint. There are two groups of v; vectors.)
We have

UTUJ:UIUJ:U], j=1...,m, and l]T'UJ:UvO:O7 j=m+1,...,n.

(e) Write down the matrix for 7" in the given bases.
Using (d), it follows that the matrix for 1" is

1 0 ... 0

= [ Imxm  Omxn—m ]

(f) Write down the matrix for U in the given bases.
Using (b), it is clear that the matrix is

{ Inxm ]
On—me
6. (15 points) Let {v1,...,v,} be a basis for a vector space V and let
n
wj:Zaijvi, j=1,...,n,
i=1

for some given coefficients a;; € F. Show that {ws,...,w,} is a basis for V if and only if
the matrix A is invertible.



Consider the linear operator T' € £(V) given by

ij = wj = E aijvi.
%

Its associate matrix with respect to the given basis is V is A. Then T is invertible if and only
if A is invertible. On the other hand, T is invertible if and only if the image of a basis is a
basis. (This is easy to prove.)

. (30 points) Let H be an inner product space, {qi,...,qx,p1,-..,Pm} be an orthonormal
basis and let

(a)

k m

Pru=>Y (u,q)q,  Pau=>» (up)p;

J=1 J=1

Show that the operators P, and P» are self-adjoint.
It has to be proved only for one of them, since both have the same structure. Then

(Pru,v) = (Z(%fzﬁ%w = Z<u7 45)(q5,v)
= Z<uaqj><v7Qj> = <U7Z<v7qj>qj> = <U7P1U>7

J J

after applying simple properties of the inner product (sesquilinearity). This proves that
Pf = Py.

Show that PP, =0 and PP, = 0.

By orthogonality of {q1,...,qx,p1,-..,Pm} it follows that

Plpj = 0, Vj

Since rangeP, = span|py, . .., P, this implies that Py P, = 0. The other equality follows
by reversing the roles of the vectors {p;} and {¢;}.

Show that if A1, Ao € C, then the operator
T =MP + X\ Ps.

is normal.

By (a), T* = A\ P1 + +A2P,. Then by (b)
T*T = (MPy + MaPo) (M PL+ X Po) = [MPPE+ AP P5 = (AP Py + [Ao* Po.

In the last inequality we have used that Pj2 = P;, although this is not needed for the
argument. Similarly we show that

TTr* = |)\1|2P12 + |)\2|2P22 = |>\1|2P1 + |)\2|2P2.

This proves that 7" is normal.

Give necessary and sufficient conditions for T" to be self-adjoint.
It is clear that if \;,\o € R, then T* = T'. If T is selfadjoint, it can only have real
eigenvalues. However, T'q; = A1q; and T'p; = Aapj, so A1, A2 € R.

4



(e)

(f)

Compute minP.

The operator minPy is diagonalizable. (lts matrix in the given basis is diagonal.) There-
fore its minimal polynomial has only simple roots. If A\; # Ao, then minPp()\)
(A= A1) (A = A2). If Ay = Ay, then minP7(\) = XA — Ay and actually T'= A 1.

Compute det T

Looking at the diagonal matrix associated to 1" in the given basis, it is clear that det T =
DLV

8. (20 points) Let T € L£(V) be such that its matrix representation with respect to the basis

{Ul,..

(a)

.,UG}iS

ro 1 -
2 1
2
3
1

3
1 3

Show that we cannot define an inner product in V such that T is self-adjoint.

There are several ways to show that T is not diagonalizable. The simplest way is by
looking at p(A — 2I) and p(Asl). Both are 5, so T has only two linearly independent
eigenvectors. If T" were selfadjoint, it'd be diagonalizable, so it is not selfadjoint with
respect to any inner product.

Find a basis for V such that the associated matrix is
e q -
3 1

3
2 1

2

1
2

We just need to reorder the basis: {vg, vs, v4, V1, V2, U3}

Assume that P € Ry[x] satisfies P(A) = 0 and P(4I) = 0. What is P?

Some work shows that minP7r = minP 4 = (A—2)3(A—3)3. For instance, minP7,,(\) =
(A —2)3 and minPz,, (\) = (A —2)3. (This has to be proved.) Then if P(A) = 0,
P(X\) = Q(A\)minP7(\). However, P(41) = 0, which means that P(4) = 0. Therefore

PN =a\A—-49)A-33*N-2)3%  aeC.

Show that {v3, Tws, T?vs,v4, Tvy, T?v4} is a basis for V and write down the matrix
representing 1" with respect to this basis.
On the one hand

(T — 2I)vs = vy, (T — 2I)*vg = (T — 21 )vy = vy.
This implies that

span[T’, v3] = span|vs, T'vs, T2vg] = span(vy, vg, U3].



Similarly span[vy, Ty, T?v4] = spanfvy, vs,ve]. Therefore the sets {vs, Tvs, T?v3} and
{vy, Ty, T?v4} are linearly independent. Since their spans are independent subspaces
(this is clear by looking at the second bases we are given for each of them), then the
union of their bases is a basis for the sum. (There are many other ways of showing this.)
Finally, we write

0= (T—2I)3v3 = T3v3—6T%v3+12Tv3—8vs, thatis T3uz = 8uz—12Tv3+6Tvs.
With an identical argument
T304 = 2Tvy — 27T 04 + 9T %04.

With this, the matrix with respect to this basis is

8
1 —12
1 6
27
1 —27
1 9




