
NAME:

MATH 672: Vector spaces

Fall’13 Final exam Part 1/2 Partial solutions

1. (15 points) Let V be a finite dimensional space and T ∈ L(V). Show that

χT (0) = 0 ⇐⇒ minPT (0) = 0 ⇐⇒ detT = 0.

Since χT (λ) = det(T − λI), it is clear that detT = χT (0), which proves that

χT (0) = 0 ⇐⇒ detT = 0.

On the other hand χT (0) = 0 if and only if λ = 0 is an eigenvalue of T , if and only if λ = 0
is a root of the minimal polynomial (all eigenvalues are roots of the minimal polynomial and
viceversa).

2. (20 points) Consider the n× n matrix

A =

⎡
⎢⎢⎢⎢⎣

μ 1

μ
. . .
. . . 1

μ

⎤
⎥⎥⎥⎥⎦

(a) Compute minPA.
A simple way consists of computing the powers (A− μI)k and see that they only vanish
when n = k. Since χA(x) = (μ − x)n, this proves that minPA(x) = (x − μ)n. In a
different way, we can see that

(A− μI)e1 = 0, (A− μI)e2 = e1, (A− μI)en = en−1.

This proves that minPA,en(x) = (x − μ)n. (It has to be of the form (x − μ)k because
of the characteristic polynomial.) Since the minimal polynomial for A is the l.c.m. of all
minimal polynomial for all vectors, minPA(x) = (x− μ)n.

(b) Find a vector v ∈ F
n
c such that minPA,v = minPA.

The vector v = en satisfies this property as shown in (a).

(c) Assuming that μ �= 0, find an explicit formula for A−1 and justify it. (Hint. By
checking the lowest dimensional cases, it is easy to guess a general formula.)
We can write

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ−1 −μ−2 μ−3 . . . (−1)n−1μ−n

μ−1 −μ−2 . . .
...

μ−1 . . . μ−3

. . . −μ−2

μ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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This is better described with the matrix

E =

⎡
⎢⎢⎢⎢⎢⎣

0 1
0 1

. . .
. . .

0 1
0

⎤
⎥⎥⎥⎥⎥⎦ = A− μI.

Then
A−1 = μ−1I − μ−2E + μ−3E2 − . . .+ (−1)n−1μ−nEn−1.

The sum ends at En−1, since En = 0. But then

AA−1 = (μI + E)(μ−1I − μ−2E + μ−3E2 + . . .+ (−1)n−1μ−nEn−1)

= I − μ−1E + μ−2E2 − . . .− (−1)n−1μn−1En−1

+ μ−1E − μ−2E2 + . . .+ (−1)n−1μn−1En−1

= I.

Another option is to check that AA−1 = I by actually multiplying these matrices.

(d) Compute minPA−1 .
From (c) it follows that χA−1(x) = (μ−1−x)n. One easy way to see whi minPA−1(x) =
(x− μ−1)n and not a lower order power is to note that

A−1 − μ−1I = (I − μ−1A)A−1 = μ−1(μI −A)A−1.

This clearly shows that (A−1−μ−1I)k = 0 if and only if (A−μI)k = 0 which is true for
k ≥ n. Another option is to realize that en has an n degree minimal polynomial w.r.t.
A−1. Another option uses the formula for the inverse to notice that

A−1 − μ−1I = −μ−2E + μ−3E2 − . . .+ (−1)n−1μ−nEn−1.

The k−th power of this matrix is a linear combination of powers of E starting at Ek.
FOr k < n this is a non-zero matrix. For k ≥ n, this is zero.

3. (10 points) In C
n
c , we consider the Euclidean (dot) inner product,

〈u, v〉 =
∑
j

vjuj .

Let now q1, . . . , qk ∈ C
n
c and let Q ∈ M(n × k;C) be the matrix whose columns are the

vectors {qj}.
(a) Show that {q1, . . . , qk} is an orthonormal set if and only if Q∗Q = Ik.

It is simple to see that if A = Q∗Q, then aij = 〈qj , qi〉 = q∗i qj . The result is then obvious.

(b) If k = n, show that {q1, . . . , qn} is an orthonormal set if and only if Q∗ = Q−1.
By (a), the set is orthonomrmal if and only if Q∗Q = In. However, now Q is square.
Therefore Q∗Q = In if and only if Q is invertible and Q−1 = Q∗. (A square matrix is
invertible if and only if it has a left or right inverse. That sided inverse is the inverse.)
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4. (10 points) In R3[x], we consider the inner product

〈p, q〉 =
∫ 1

0
p(x)q(x)dx.

Let then

H1 = {p ∈ R3[x] : p(1) = 0}, H2 = {p ∈ R3[x] : p
′(1) = 0}.

(a) Find an orthonormal basis for H1 ∩ H2. (Show how to compute everything, but do
not show all details in computation of integrals.)
A basis for H1 ∩H2 is

{1− 2x+ x2, 2− 3x+ x3}.
Another easy one is {(1 − x)2, (1 − x)3}. Let p1 = 1 − 2x + x2 and p2 = 2 − 3x + x3.
Then we start the Gram-Schmodit process doing

q̃1 = p1, ‖q̃1‖2 = 1
5 , and we define q1 =

√
5q̃1.

We then define

q̃2 = p2 − 〈p2, q1〉q1 = p2 − 〈p2, q̃1〉5q̃1 = p2 − 13
20p1 = x3 − 13

6 x
2 + 4

3x− 1
6 .

Finally
‖q̃2‖2 = 1

252 = 1
6
√
7

and we define q2 =
√
252 q̃2.

The {q1, q2} is an orthonormal basis for H1 ∩H2.

(b) Find the orthogonal projection of p(x) = x2 onto H1 ∩H2.
We just need to compute

πx2 = 〈x2, q1〉q1 + 〈x2, q2〉q2
= 〈x2, q̃1〉5q̃1 + 〈x2, q̃2, 〉252 q̃2

= 14
5 x

3 + 59
10x

2 − 17
5 x− 3

10 .

5. (15 points) Let H be a finite dimensional inner product space.

(a) Give a direct proof of the following result:

range(T ) = (kerT ∗)⊥.

For any subspace W, we can show that W⊥⊥ = W. Then we only need to show that

(range(T )⊥ = kerT ∗.

However,

T ∗u = 0 ⇐⇒ 〈T ∗u, v〉 = 0 ∀v
⇐⇒ 〈u, Tv〉 = 0 ∀v
⇐⇒ 〈u,w〉 = 0 ∀w ∈ range(T ).
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(b) Show that if W is a subspace of H, then

dimW + dimW⊥ = dimH.

This follows from the equality W ⊕W⊥ = H. We first show that the sum is direct by
showing that W ∪W⊥ = {0}, which follows from

u ∈ W ∩W⊥ =⇒ u⊥u =⇒ u = 0.

Next, if u ∈ H and πWu is the orthogonal projection of u onto W, then u−πWu ∈ W⊥,
and this proves that W +W⊥ = H.

(c) Show that
ρ(T ) = ρ(T ∗)

using the previous results.
This one is easy now:

ρ(T ) = dim range(T )

= dimH− dim(rangeT )⊥ (by (b))

= dimH− dimkerT ∗ (by (a))

= dimH− ν(T ∗)
= ρ(T ∗).

6. (15 points) In R3[x], we consider the following functionals

(p, ψj) =
1

j!
p(j)(1), j = 0, 1, 2, 3,

the canonical basis e = {1, x, x2, x3} and its dual basis e∗ = {e∗0, e∗1, e∗2, e∗3}.
(a) Show that q∗ = {ψ0, ψ1, ψ2, ψ3} is a basis for R3[x]

∗.
Let

p∗ = c0ψ0 + c1ψ1 + c2ψ2 + c3ψ3 = 0.

Then

0 =(1, p∗) =c0

0 =(x, p∗) =c0 + c1

0 =(x2, p∗)=c0 + 2c1 + c2

0 =(x3, p∗)=c0 + 3c1 + 3c2 + c3.

This implies that c0 = c1 = c2 = c3 = 0 and the set q∗ is linearly independent. Since
dimR3[x]

∗ = dimR3[x] = 4, it is a basis.

(b) Write the matrix for the change of basis from e∗ to q∗.
For any functional p∗

p∗ =
∑
j

(ej , p
∗)e∗j = (1, p∗)e∗0 + (x, p∗)e∗1 + (x2, p∗)e∗2 + (x3, p∗)e∗3.
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If we apply this to the elements of q∗ we obtain the elements of the columns of the matrix
for the change of variables from q∗ to e∗. These computations are implicit in (a). The
matrix is ⎡

⎢⎢⎣
1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

⎤
⎥⎥⎦ .

Its inverse is the matrix that we are looking for:

P =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0
1 −2 1 0
−1 3 −3 1

⎤
⎥⎥⎦ .

(c) Using the result of (b), find the coefficients of the decomposition

e∗2 =
3∑

j=0

cjψj .

These coefficients are in the third column of P in (b). Therefore e2 = ψ2 − 3ψ3.

7. (15 points) In M(n;R) we consider the inner product

〈A,B〉 =
∑
i,j

aijbij = trace(BTrA)

and the operator TA = ATr.

(a) Show that T is self-adjoint.
This follows from this simple argument

〈A,ATr〉 =
∑
i,j

aijaji =
∑
i,j

ajiaij = 〈ATr, A〉.

(b) Give a direct argument (no characteristic polynomial involved), to show that the only
possible eigenvalues of T are ±1.
Assume that ATr = λA. Therefore

A = (ATr)Tr = (λA)Tr = λATr = λ2A

or (λ2 − 1)A = 0. The only two possible roots are λ = ±1.

(c) Use these facts and the spectral theorem to prove that M(n;R) = H1 ⊕H−1, where
H1 is the set of symmetric matrices and H−1 is the set of skew-symmetric matrices,
and that the sum is orthogonal.
The set ker(T + I) is the set of skew-symmetric matrices. The set ker(T − I) is the set
of symmetric matrices. (This follows from the definition of T .) Eigenvectors for different
eigenvalues are orthogonal because T is selfadjoint by (a). Also T is diagonalizable
because it is selfadjoint, and its only eigenvalues are ±1 by (b). Then, we can build an
orthonormal basis of eigenvectors, that is, of symmetric and skew-symmetric matrices.
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8. (20 points) Let T ∈ L(H) be a selfadjoint operator on a complex inner product space
H, and let P ∈ R[x]. Show that P (T ) is also selfadjoint. If T is normal, is also P (T )
normal?
Let P (x) =

∑
j ajx

j with aj ∈ R. A simple computation (induction) shows that T k is
selfadjoint for all k. Then

〈P (T )u, v〉 =
∑
j

aj〈T ju, v〉 =
∑
j

aj〈u, T jv〉 = 〈u,
∑
j

ajT
jv〉 = 〈u, P (T )v〉.

If T is normal, we can actually have complex coefficients and

T ∗P (T ) = T ∗∑
j

ajT
j =

∑
j

ajT
∗T j =

∑
j

ajT
jT ∗ = P (T )T ∗,

where we have used that T ∗T j = T jT ∗, which can be proved by induction.
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NAME:

MATH 672: Vector spaces

Fall’13 Final exam Part 2/2 Partial solutions

1. (20 points) Define:

(a) Subspace of a vector space

It is a non-empty subset of the vector space that is closed by addition and scalar multi-
plication.

(b) Linear operator between two vector spaces

An operator T : V → W, between two vector spaces over the same field, is linear when

T (av1 + bv2) = aTv1 + bTv2 ∀v1, v2 ∈ V, ∀a, b ∈ F.

(c) Adjoint of a linear operator between two vector spaces
Given a linear operator T : V → W, its adjoint is the operator T ∗ : W∗ → V∗ such that

(Tv,w∗) = (v, T ∗w∗) ∀v ∈ V, ∀w∗ ∈ W∗.

(d) Adjoint of a linear operator in an inner product space

The adjoint of T : H → H (where H is an inner product space equipped with an inner
product 〈·, ·〉) is the only operator T ∗ : H → H satisfying

〈Tu, v〉 = 〈u, T ∗v〉 ∀u, v ∈ H.

2. (20 points) Let V and W be vector spaces over F with dimV = 4 and dimW = 6. Let
T ∈ L(V,W).

(a) What is ν(T ∗)− ν(T )?
Using the relation between rank and nullity and the fact that ρ(T ) = ρ(T ∗), we prove
that

ν(T ∗) =dimW − ρ(T ∗) = 6− ρ(T ∗)
=6− ρ(T ) = 6− (dimV − ν(T )) = 2 + ν(T ),

so ν(T ∗)− ν(T ) = 2.

(b) Show that T is not surjective.
Since ρ(T ) = 4 − ν(T ) ≤ 4, it is not possible that ρ(T ) = 6 and therefore T is not
surjective.

(c) Show that T ∗ is not injective.
Since ν(T ∗) = 6 − ρ(T ∗) = 6 − ρ(T ) ≥ 2 (ρ(T ) ≤ dimW ≤ 4), it is clear that T ∗ has
at least a two-dimensional kernel.

1



(d) If T is injective, what is its rank?
If ν(T ) = 0, then ρ(T ) = dimV − ν(T ) = 4.

3. (25 points) Let H be a complex inner product space and T ∈ L(H).

(a) Show that T ∗T is self-adjoint.
Directly, we can compute (T ∗T )∗ = T ∗T ∗∗ = T ∗T , using that (AB)∗ = B∗A∗ and
A∗∗ = A. We can also note that

〈(T ∗T )∗u, v〉 = 〈u, T ∗Tv〉 = 〈Tu, Tv〉 = 〈T ∗Tu, v〉 ∀u, v ∈ H.

(b) Show that ker(T ∗T ) = kerT . (Hint. 〈T ∗Tu, u〉 = 〈Tu, Tu〉.)
If Tu = 0, then T ∗Tu = T ∗0 = 0. If T ∗Tu = 0, then

0 = 〈T ∗Tu, u〉 = 〈Tu, Tu〉 = ‖Tu‖2,
so Tu = 0.

(c) Show that the operators 1
2(T + T ∗) and 1

2ı(T − T ∗) are self-adjoint.
We can use the same arguments as in (a) plus (aT )∗ = aT ∗. Also,

〈12(T + T ∗)u, v〉 = 1
2〈u, (T ∗ + T )v〉 = 〈u, 12(T + T ∗

v 〉
and

〈 1
2ı(T − T ∗)u, v〉 = 1

2ı〈u, (T ∗ − T )v〉 = 〈u, 1
2ı
(T ∗ − T )v〉 = 〈u, 1

2ı(T − T ∗)v〉
for all u, v ∈ H.

4. (20 points) Let V1 and V2 be subspaces of a seven dimensional vector space V and assume
that dimV1 = 3 and dimV2 = 4. Tabulate all possibilities of dimensions of V1 ∩ V2 and
relate them to all possibilities of dimensions of V1 + V2. Is the sum direct in any of the
cases?

We use the formula

dim (V1 + V2) + dim (V1 ∩ V2) = dimV1 + dimV2 = 7.

and note that dim (V1 ∩ V2) ≤ dimV1 = 3. Therefore we can have

dim(V1 + V2) dim(V1 ∩ V2) Notes

7 0 V1 ⊕ V2 = V
6 1
5 2
4 3 V1 ⊂ V2, V1 + V2 = V2

5. (30 points) Let T ∈ L(V,W) be surjective and

dimV = n > m = dim(W).

Let v = {v1, . . . , vn} be a basis of V, where kerT = span[vm+1, . . . , vn]. Finally, let
w = {w1, . . . , wm} be given by

wj = Tvj , j = 1, . . . ,m.
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(a) Show that w is a basis for W.
We only need to show linear independence. If

∑
j cjwj = 0, then using linearlity of T

0 =
m∑
j=1

cjTvj = T (
m∑
j=1

cjvj) =⇒
m∑
j=1

cjvj ∈ kerT = span[vm+1, . . . , vn].

By linear independence of the vectors {v1, . . . , vn} it follows that cj = 0 for all j.

(b) Consider now the operator U ∈ L(W,V) given by

Uwj = vj , j = 1, . . . ,m.

Show that TUw = w for all w ∈ W.
By definition of wj and U

TUwj = Tvj = wj j = 1, . . . ,m.

Since {w1, . . . , wm} is a basis of W, it follows that

TUw = TU(
∑
j

cjwj) =
∑
j

cjTUwj =
∑
j

cjwj = w.

(c) Show that U is injective but not surjective.
If Uw = 0, then 0 = TUw = w, so kerU = {0}. The operator U cannot be surjective
because ρ(U) = dimW − ν(U) ≤ m < n = dimV,

(d) Compute UTvj for all j. (Hint. There are two groups of vj vectors.)
We have

UTvj = Uwj = vj , j = 1, . . . ,m, and UTvj = U0 = 0, j = m+1, . . . , n.

(e) Write down the matrix for T in the given bases.
Using (d), it follows that the matrix for T is⎡

⎢⎣
1 0 . . . 0

. . .
...

...
1 0 . . . 0

⎤
⎥⎦ =

[
Im×m 0m×n−m

]

(f) Write down the matrix for U in the given bases.
Using (b), it is clear that the matrix is[

Im×m

0n−m×m

]

6. (15 points) Let {v1, . . . , vn} be a basis for a vector space V and let

wj =

n∑
i=1

aijvi, j = 1, . . . , n,

for some given coefficients aij ∈ F. Show that {w1, . . . , wn} is a basis for V if and only if
the matrix A is invertible.
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Consider the linear operator T ∈ L(V) given by

Tvj = wj =
∑
i

aijvi.

Its associate matrix with respect to the given basis is V is A. Then T is invertible if and only
if A is invertible. On the other hand, T is invertible if and only if the image of a basis is a
basis. (This is easy to prove.)

7. (30 points) Let H be an inner product space, {q1, . . . , qk, p1, . . . , pm} be an orthonormal
basis and let

P1u =
k∑

j=1

〈u, qj〉qj , P2u =
m∑
j=1

〈u, pj〉pj .

(a) Show that the operators P1 and P2 are self-adjoint.
It has to be proved only for one of them, since both have the same structure. Then

〈P1u, v〉 = 〈
∑
j

〈u, qj〉qj , v〉 =
∑
j

〈u, qj〉〈qj , v〉

=
∑
j

〈u, qj〉〈v, qj〉 = 〈u,
∑
j

〈v, qj〉qj〉 = 〈u, P1v〉,

after applying simple properties of the inner product (sesquilinearity). This proves that
P ∗
1 = P1.

(b) Show that P1P2 = 0 and P2P1 = 0.
By orthogonality of {q1, . . . , qk, p1, . . . , pm} it follows that

P1pj = 0, ∀j.

Since rangeP2 = span[p1, . . . , pm], this implies that P1P2 = 0. The other equality follows
by reversing the roles of the vectors {pi} and {qi}.

(c) Show that if λ1, λ2 ∈ C, then the operator

T = λ1P1 + λ2P2.

is normal.
By (a), T ∗ = λ1P1 ++λ2P2. Then by (b)

T ∗T = (λ1P1 + λ2P2)(λ1P1 + λ2P2) = |λ1|2P 2
1 + |λ2|2P 2

2 = |λ1|2P1 + |λ2|2P2.

In the last inequality we have used that P 2
j = Pj , although this is not needed for the

argument. Similarly we show that

TT ∗ = |λ1|2P 2
1 + |λ2|2P 2

2 = |λ1|2P1 + |λ2|2P2.

This proves that T is normal.

(d) Give necessary and sufficient conditions for T to be self-adjoint.
It is clear that if λ1, λ2 ∈ R, then T ∗ = T . If T is selfadjoint, it can only have real
eigenvalues. However, Tqj = λ1qj and Tpj = λ2pj , so λ1, λ2 ∈ R.
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(e) Compute minPT .
The operator minPT is diagonalizable. (Its matrix in the given basis is diagonal.) There-
fore its minimal polynomial has only simple roots. If λ1 �= λ2, then minPT (λ) =
(λ− λ1)(λ− λ2). If λ1 = λ2, then minPT (λ) = λ− λ1 and actually T = λ1I.

(f) Compute detT .
Looking at the diagonal matrix associated to T in the given basis, it is clear that detT =
λk
1λ

m
2 .

8. (20 points) Let T ∈ L(V) be such that its matrix representation with respect to the basis
{v1, . . . , v6} is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 1
2 1

2
3
1 3

1 3

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) Show that we cannot define an inner product in V such that T is self-adjoint.
There are several ways to show that T is not diagonalizable. The simplest way is by
looking at ρ(A − 2I) and ρ(A3I). Both are 5, so T has only two linearly independent
eigenvectors. If T were selfadjoint, it’d be diagonalizable, so it is not selfadjoint with
respect to any inner product.

(b) Find a basis for V such that the associated matrix is⎡
⎢⎢⎢⎢⎢⎢⎣

3 1
3 1

3
2 1

2 1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

We just need to reorder the basis: {v6, v5, v4, v1, v2, v3}.
(c) Assume that P ∈ R7[x] satisfies P (A) = 0 and P (4I) = 0. What is P?

Some work shows thatminPT = minPA = (λ−2)3(λ−3)3. For instance, minPT,v3(λ) =
(λ − 2)3 and minPT,v4(λ) = (λ − 2)3. (This has to be proved.) Then if P (A) = 0,
P (λ) = Q(λ)minPT (λ). However, P (4I) = 0, which means that P (4) = 0. Therefore

P (λ) = a (λ− 4)(λ− 3)3(λ− 2)3, a ∈ C.

(d) Show that {v3, T v3, T 2v3, v4, T v4, T
2v4} is a basis for V and write down the matrix

representing T with respect to this basis.
On the one hand

(T − 2I)v3 = v2, (T − 2I)2v3 = (T − 2I)v2 = v1.

This implies that

span[T, v3] = span[v3, T v3, T
2v3] = span[v1, v2, v3].

5



Similarly span[v4, T v4, T
2v4] = span[v4, v5, v6]. Therefore the sets {v3, T v3, T 2v3} and

{v4, T v4, T 2v4} are linearly independent. Since their spans are independent subspaces
(this is clear by looking at the second bases we are given for each of them), then the
union of their bases is a basis for the sum. (There are many other ways of showing this.)
Finally, we write

0 = (T−2I)3v3 = T 3v3−6T 2v3+12Tv3−8v3, that is T 3v3 = 8v3−12Tv3+6T 2v3.

With an identical argument

T 3v4 = 27v4 − 27Tv4 + 9T 2v4.

With this, the matrix with respect to this basis is⎡
⎢⎢⎢⎢⎢⎢⎣

8
1 −12

1 6
27

1 −27
1 9

⎤
⎥⎥⎥⎥⎥⎥⎦
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