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MATH 672: Vector spaces

Fall’13 Second midterm exam Part 2/2 Partial solutions

1. (20 points) Define:

(a) Linear functional on a vector space V.
It is a linear map from V to its underlying field F.

(b) The dual space of a vector space V.
It is the set of all linear functionals on V, endowed with addition of operators and multi-
plication of operators by scalars/

(c) Alternating k−linear form in a vector space V.
It is a map of k variables, Ψ : V × . . .×V → F, which is linear in each variable and such
that

Ψ(vσ1 , . . . , vσk) = sgn(σ)Ψ(v1, . . . , vk)

for all σ ∈ Sk and v1, . . . , vk ∈ V.

(d) The transpose/adjoint of an operator T ∈ L(V,W).
It is the operator T ∗ :W∗ → V∗ given by the relation

(Tv,w∗) = (v, T ∗w∗) ∀v ∈ V, w∗ ∈ W∗,

or equivalently T ∗w∗ = w∗T .

2. (15 points) State (giving all hypotheses):

(a) Cayley-Hamilton’s Theorem.
If T is a linear operator in a finite dimensional space and χT is its characteristic polynomial,
then χT (T ) = 0.

(b) The relation between the nullity and the rank of an operator L(V,W), where V and
W are finite dimensional.
ρ(T ) + ν(T ) = dimV.

(c) The result that relates the dimensions of the intersection and the sum of two subspaces
of a finite dimensional space.
dimV1 ∩ V2 + dimV1 + V2 = dimV1 + dimV2.

3. (25 points) Let T be given by the following relations

Tv1 = 2v1, T v2 = 2v2 + v1, T v3 = −v3, T v4 = −v4 + v3, T v5 = 2v5,

where {v1, . . . , v5} is a basis for V.

(a) Find a basis for V such that the associated matrix is

A =


2

2
1 2

−1
1 −1


1



(The numbers that are not displayed are zero.)

Let w = {v5, v2, v1, v4, v3}. It is simple to check that the matrix w.r.t. to w is A.

(b) Find all eigenvectors of A. Relate them to eigenvectors of T . (Recall that eigenvectors
are organized in subspaces, so eigenvectors should be returned as spans.)
Note that χT (λ) = χA(λ) = (2− λ)3(−1− λ)2. Note also that

A− 2I =


0

0
1 0

−3
1 −3

 A+ I =


3

3
1 3

0
1 0


If {e1, . . . , e5} are the canonical vectors of F5, then it is a simple observation to note that

ker(A− 2I) = span[e1, e3], ker(A+ I) = span[e5].

Therefore, relating coordinates in F5 to vectors of V represented in the basis of (a),

ker(T − 2I) = span[v5, v1], ker(T + I) = span[v3].

Note that these vectors could already be observed in the original hypotheses of the prob-
lem, but we had to show that these were all the eigenvectors.

(c) Find the minimal polynomial for v2 and v5.
Since Tv5 = 2v5, then minPT,v5(λ) = λ− 2. From the hypotheses it follows that

(T − 2I)v2 = v1, (T − 2I)2v2 = (T − 2I)v1 = 0,

so minPT,v2(λ) = (λ− 2)2.

(d) Give a reasoned guess of what the minimal polynomial of T is.
Apart from three vectors in the basis that are eigenvectors, we have minPT,v2(λ) =
(λ− 2)2 and with exactly the same argument minPT,v4(λ) = (λ+ 1)2. Taking the l.c.m.
of the minimal polynomials for all the vectors in the basis, it follows that minPT (λ) =
(λ− 2)2(λ+ 1)2.

(e) Is T diagonalizable? Why/why not?
From (b) it is clear that we cannot find a basis of V using eigenvectors of T . Therefore
T is not diagonalizable.

4. (20 points) Find the subspace V ⊂ R3[x] such that

V⊥ = span[φ0, φ1], (p, φ0) = p(0), (p, φ1) = p(1).

We are looking for all p(x) = a0 + a1x+ a2x
2 + a3x

3 such that

0 = (p, φ0) = a0, 0 = (p, φ1) = a0 + a1 + a2 + a3.

This is clearly the same as span[−x+ x2,−x+ x3].
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5. (20 points) Consider the operator T : R1[x] → R2[x] given by Tp(x) = (1 + x)p(x). Let
e = {1, x} and f = {1, x, x2} be the respective canonical bases for R1[x] and R2[x], and let
e∗ and f∗ be the corresponding dual bases for R1[x]∗ and R2[x]∗. What is the matrix for
T ∗ written in the bases f∗ and e∗?

Note that
T1 = 1 + x, Tx = x+ x2.

The matrix representation for T w.r.t. e and f is

A =

 1 0
1 1
0 1

 .
Therefore, the matrix represenation for T ∗ w.r.t. f∗ and e∗ is ATr.

6. (20 points) If T = R−1SR, where R ∈ GL(V), prove that P (T ) = R−1P (S)R for every
polynomial P ∈ F[x]. Conclude that the minimal polynomials for T and S are the same.

Note that T k = R−1SkR for all k ≥ 0. (This is easy to prove by induction.) Then if
P (x) =

∑
j ajx

j

P (T ) =
∑
j

ajT
j =

∑
j

ajR
−1SjR = R−1(

∑
j

ajS
j)R = R−1P (S)R,

where we have used elementary properties of matrix multiplication. Therefore P (T ) = 0 if and
only if R−1P (S)R = 0, and since R is invertible, if and only if P (S) = 0. Using the definition
of minP it follows that the minimal polynomial for both operators is the same.

7. (20 points) Let S ∈ L(V). Then

kerSk ⊆ kerSk+1 ∀k.

Why?

If Skv = 0, then Sk+1v = SSkv = 0.

Assume now that
kerSk = kerSk+1,

pick u ∈ V such that Sk+2u = 0, and define v = Su. Then v ∈ kerSk+1. Why?

Sk+1v = Sk+2u = 0.

This implies that Sk+1u = 0. Why?

We have shown that v ∈ kerSk+1 = kerSk, and therefore Skv = 0, which implies that
Sk+1u = Skv = 0.

We have thus proved that if kerSk = kerSk+1, then kerSk+1 = kerSk+2. Explain how.

The previous argument shows that kerSk+2 ⊆ kerSk+1 for this particular value of k. However,
kerSk+1 ⊆ kerSk+2, and this proves that both sets are equal.
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8. (20 points) Let A be a square matrix such that A 6= 0 and A 6= I. Assume that

A2 −A = 0.

Show that
χA(x) = (−1)nxk(x− 1)n−k, 1 ≤ k ≤ n− 1.

The polynomial P (λ) = λ2 − λ satisfies P (A) = 0 and neither of its divisors satisfies this
property. Therefore minPA(λ) = λ(λ− 1). The characteristic polynomial is a multiple of this
polynomial containing no other irreducible factors (roots). Therefore it has the given form.
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NAME:

MATH 672: Vector spaces

Fall’13 Second midterm exam Part 1/2 Partial solutions

1. (15 points) Let {v∗1, . . . , v∗n} be a basis for V∗, where V is a vector space over F. Consider
the alternating bilinear forms

(v∗i ∧ v∗j )(u1, u2) = (u1, v
∗
i )(u2, v

∗
j )− (u1, v

∗
j )(u2, v

∗
i ), i < j.

Show that they are a basis for the space of alternating bilinear forms in V.

Let {v1, . . . , vn} be the basis of V such that

(vi, v
∗
j ) = δij . (1)

We first show linear independence of the given bilinear forms. If
∑

i<j aij(v
∗
i ∧ v∗j ) = 0, then

for l < m

0 =
∑
i<j

aij(v
∗
i ∧ v∗j )(vl, vm)

=
∑
i<j

aij((vl, v
∗
i )(vm, v

∗
j )− (vl, v

∗
j )(vm, v

∗
i ))

=
∑
i<j

aij(δl,iδm,j − δl,jδm,i) (by (1))

=alm. (i < j, l < m so i = m, j = l not possible)

This proves that the set is linearly independent. To prove that it is spanning, we take ψ bilinear
and alternating, define aij = ψ(vi, vj) for i < j and

ϕ =
∑
i<j

aij(v
∗
i ∧ w∗j ).

With the same argument above, we verify that ϕ(vi, vj) = aij = ψ(vi, vj) for all i < j.
However, both bilinear forms are alternating, so this proves that ϕ(vi, vj) = ψ(vi, vj) for all
i, j.

Alternatively, we can count the number of elements v∗i ∧ v∗j and notice that it coincides with

the dimension of the subspace of alternating bilinear forms, which is 1
2n(n = 1).

2. (15 points) Let S, T ∈ L(V) be such that ST = TS, where V is a vector space over C.
Assume that 0 6= v ∈ V satisfies Tv = λv for some λ ∈ C.

(a) Show that W = ker(T − λI) is S−invariant and has dimension at least one.
By hypothesis 0 6= v ∈ W, so W is at least one dimensional. If w ∈ W, then

(T − λI)Sw = S(T − λI)w (S and T commute)

= S0 = 0 (w ∈ W)

which proves that W is S-invariant.
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(b) Consider the operator SW ∈ L(W) given by SWw = Sw for w ∈ W. Show that is
has at least one eigenvector.
SW is a linear operator in a vector space of dimension at least one over C. Therefore its
characteristic polynomial has at least one root µ, and there exists 0 6= w ∈ W such that
SWw = Sw = µw.

(c) Conclude from the previous argument that two commuting operators in a C-vector
space have at least one common eigenvector.
The vector in (b) is an eigenvector for S, and for T , since it is an element of W =
ker(T − λI).

(d) Find an example of the above where the eigenvalue is different.
Take T = I and S = 0 in any V. All vectors are eigenvectors and the eigenvalue is 1 for
T and 0 for S.

3. (15 points) Let T ∈ L(M(n,R)) be given by TA = A+ATr.

(a) Compute the characteristic polynomial of T . (Hint. Use a basis of M(n,F) using
exclusively symmetric and skew-symmetric matrices.)
Let

V1 = {A ∈M(n,F) : ATr = A},
V2 = {A ∈M(n,F) : ATr = −A}.

It is simple to see that V1⊕V2 =M(n,F) and dimV1 = 1
2n(n+ 1) = k, while dimV2 =

1
2n(n− 1). Consider a basis of the space in the form

{A1, . . . , Ak︸ ︷︷ ︸
basis for V1

, Ak+1, . . . , An2︸ ︷︷ ︸
basis for V2

}.

Since TA = 2A for A ∈ V1 and TA = 0 for A ∈ V2, the matrix representing T in this
basis is diagonal [

2Ik 0
0 0

]
and the characteristic polynomial of T is the same as the one for the matrix, namely
(2− λ)k(−λ)n

2−k where k = 1
2n(n+ 1).

(b) Find minPT,A for an arbitrary A. (Hint. There are three cases: A symmetric, A
skewsymmetric, and A neither symmetric nor skew-symmetric.)
If 0 6= A ∈ V1, then (T − 2I)A = 0 so minPT,A(λ) = λ− 2. SImilarly for 0 6= A ∈ V2,
minPT,A = λ. Finally, for a general A,

TA = A+ATr, T 2A = 2(A+ATr),

so (T 2 − 2T )A = 0. If A 6∈ V1 and A 6∈ V2, then its minimal polynomial needs to be
λ2 − 2λ = λ(2− λ), since none of its divisors cancels A.

(c) Find minPT .
The least common multiple of λ− 2, λ and λ(λ− 2) is minPT = λ(λ− 2).

(d) Show that T is diagonalizable.
This follows from the argument in (a)

4. (15 points) Let Ψ : V × V → V be a bilinear map and let v∗ ∈ V∗.
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(a) Show that ψ(v1, v2) = (Ψ(v1, v2), v
∗) defines a bilinear form.

For general v1, v2, v3 ∈ V and a, b ∈ F,

ψ(av1 + bv2, v3) =(Ψ(av1 + bv2, v3), v
∗)

=(aΨ(v1, v3) + bΨ(v2, v3), v
∗) (Ψ is bilinear)

=a(Ψ(v1, v3), v
∗) + b(Ψ(v2, v3), v

∗) (v∗ is linear)

=aψ(v1, v3) + vψ(v2, v3).

For identical reasons

ψ(v3, av1 + bv2) =(Ψ(v3, av1 + bv2), v
∗)

=(aΨ(v3, v1) + bΨ(v3, v2), v
∗) (Ψ is bilinear)

=a(Ψ(v3, v1), v
∗) + b(Ψ(v3, v2), v

∗) (v∗ is linear)

=aψ(v3, v2) + vψ(v3, v1),

for all v1, v2, v3 ∈ V and a, b ∈ F. This proves that ψ is bilinear.

(b) Apply this to show that ψ(A,B) = trace(BTrA) is a bilinear form in M(n,R).
It is easy to prove that the map trace(A) = a11+. . .+ann is a linear form inM(n,R). We
next prove that Ψ(A,B) = BTrA is bilinear. This follows from very simple properties
of the product of matrices and by the linearity of the transposition operator: for all
A,B,C ∈M(n,R) and a, b ∈ R

Ψ(aA+ bB,C) = CTr(aA+ bB) = aCTrA+ bCTrB = aΨ(A,C) + cΨ(B,C),

Ψ(C, aA+ bB) = (aA+ bB)TrC = aATrC + bBTrC = aΨ(C,A) + cΨ(C,B).

Bilinearity of ψ follows from (a).

(c) Show that ψ is symmetric.
This is a simple argument:

ψ(B,A) = trace(ATrB) = trace((ATrB)Tr) (since traceC=traceCTr)

= trace(BtrA) = ψ(A,B) ((CD)Tr = DTrCTr)

5. (15 points) Let T ∈ L(V) be represented by the matrix

A =


c 1

c 1
c 1

c

 .
(The numbers that are not displayed are zeros.) Show that it can also be represented by
the matrix

B =


c
1 c

1 c
1 c

 .
In other words, show that A and B are similar.
If {v1, v2, v3, v4} is the basis with respect to which the matrix representation is A, then

Tv1 = cv1, T v2 = cv2 + v1, T v3 = cv3 + v2, T v4 = cv4 + v3.
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Let us then reorder the basis to get {v4, v3, v2, v1} or, equivalently wj = v5−j for j = 1, . . . , 4.
Then

Tw1 = cw1 + w2, Tw2 = cw2 + w3, Tw3 = cw3 + w4, Tw4 = cw4.

The matrix representation w.r.t. this basis is therefore B.

6. (15 points) An operator T ∈ L(V) is cyclic if there exists a basis {v1, v2, . . . , vn} such that
the associated matrix is 

0 0 . . . . . . 0 −a0
1 0 . . . . . . 0 −a1
0 1 0 . . . 0 −a2
...

...
. . .

...
0 0 . . . 1 0 −an−2
0 0 . . . 0 1 −an−1


.

In this case, the vector v = v1 is called cyclic as well. Show that minPT,v = (−1)nχT .
(Hint. Write what having this matrix representation means in terms of the vectors of the
basis.) Use this to prove that T is cyclic if and only if χT = (−1)nminPT .

The characteristic polynomial of this matrix/operator is P (x) = (−1)n(xn +
∑

j ajx
j). It is

simple to see from the matrix representation that

T jv = vj+1 j = 0, . . . , n− 1,

so {v, Tv, . . . , Tn−1v} = {v1, . . . , vn} are linearly independent. This proves that the degree
of the minimal polynomial for v is n, and since it has to be monic and divide the characteristic
polynomial it follows that minPT,v(x) = xn +

∑
j ajx

j .

If T is cyclic, then we have seen that there exists v such that minPT,v = (−1)nχT . Since
minPT is monic, divides χT and is a multiple of minPT,v it follows that minPT = minPT,v.

Assume that χT = (−1)nminPT . We will see next that there exists v such that minPT,v =
minPT (this is true for any operator). If we consider the vectors v1 = v, v2 = Tv, . . . , vn =
Tn−1v, it is clear that they are linearly independent (the degree of minPT,v is n), so they form
a basis for V. Since Tvj = vj+1 for j = 1, . . . , n − 1, the matrix representation of T w.r.t.
this basis has the given form.

Side problem: there exists v such that minPT,v = minPT . Let

minPT = Φm1
1 . . .Φmk

k ,

where Φj are relatively prime and irreducible (they cannot be factored). For each j, there
exists vj such that minPT,vj = Φ

mj

j Qj for some polynomial Qj . Otherwise, the factor Φ
mj

j

would not be in the minimal polynomial. Define then wj = Qj(T )vj . It is very simple to see
that minPT,wj = Φ

mj

j . Finally, it is relatively easy to prove that v = w1 + . . .+wk has minPT
as its minimal polynomial.
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