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MATH 672: Vector spaces

Fall’13 Quiz # 8 Partial solutions

1. (30 points) Let T ∈ L(V), {v1, . . . , vn} be a basis for V and assume that

Tvj = v1 + v2 + . . .+ vn ∀j.

(a) Show that v1 + . . .+ vn is an eigenvector.
This is quite obvious by linearity

T (v1 + v2 + . . .+ vn) = n(v1 + v2 + . . .+ vn)

(b) Compute ν(T ).
The matrix associated to T in basis {v1, . . . , vn} is

A =

⎡
⎢⎢⎢⎣

1 1 . . . 1
1 1 . . . 1
...

...
...

1 1 . . . 1

⎤
⎥⎥⎥⎦

Its rank is clearly one, so ν(T ) = n− 1.

(c) Using the results of (a) and (b) (no computations are required), give χT .
From (a), λ = n is an eigenvalue, and from (b) we have n − 1 linearly independent
eigenvectors for λ = 0. Therefore

χT (λ) = (−1)n(λ− n)λn−1.

(d) Show that T is diagonalizable.
This follows directly from (a) and (b), since we can find a basis composed of n linearly
independent eigenvectors. Actually, it is easy to show that

{v1 + . . .+ vn, v2 − v1, . . . , vn − v1}

is one such basis.

(e) Compute minPT,vj for all j. (Hint. This is very easy using the definition.)
We have

T 2vj = T (v1 + . . .+ vn) = n(v1 + . . .+ vn) = nTvj ,

so minPT,vj (λ) is a multiple of λ(λ − n). However, since vj is not en eigenvector, it
cannot be any proper divisor, and therefore minPT,vj (λ) = λ(λ− n).

(f) Write (and argument) what minPT is.
Since all basis vectors have the same minimal polynomial, it follows that minPT =
minPT,vj for all j.

2. (15 points) Let A be such that
A2 = 4A− 4I.
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(a) What is the characteristic polynomial of A? (Prove your assertion.)
We have that P (λ) = λ2 − 4λ + 4 = (λ − 2)2 satisfies P (A) = 0. Therefore the only
possible root of χA is λ = 2 and χA(λ) = (2− λ)n

(b) What are the possible minimal polynomials of A?
It can only be λ− 2 and (λ− 2)2.

(c) Show that either A is diagonal or it is not diagonalizable.
If minPA(λ) = λ − 2, then A = 2I. Otherwise, A cannot be diagonalizable, since its
only possible eigenvalue is 2 and in case of being diagonalizable it would be similar to 2I
which is only similar to itself.

3. (10 points) Let T ∈ L(V) be given by its action on a basis

Tv1 = 2v1, T v2 = αv1 + 2v2, T v3 = βv1 + γv2 + 5v3.

Show that T is diagonalizable if and only if α = 0. (Hint. There is no need to compute
eigenvectors. You just need to count how many linearly independent eigenvectors there
are.)
The associated matrix is

A =

⎡
⎣ 2 α β

0 2 γ
0 0 5

⎤
⎦ ,

and therefore χT (λ) = (2− λ)2(5− λ). It is clear that dimker(A− 5I) = 1. Also

ρ(A− 2I) =

{
2 if α �= 0,
1 if α = 0,

which proves that

dimker(A− 2I) = ν(T − 2I) = 3− ρ(A− 2I) =

{
1 if α �= 0,
2 if α = 0,

and this finishes the proof.

4. (10 points) In R3[x] we consider the inner product

〈p, q〉 =
∫ 1

0
xp(x)q(x)dx.

Compute a basis for {1, x}⊥.
This is equivalent to finding all polynomials p = a0 + a1x+ a2x

2 + a3x
3 such that

1
2a0 +

1
3a1 +

1
4a2 +

1
5a3 = 0, 1

3a0 +
1
4a2 +

1
5a2 +

1
6a3 = 0.

The solutions to this system are

a2

⎡
⎢⎢⎣

3
10
−6

5
1
0

⎤
⎥⎥⎦+ a2

⎡
⎢⎢⎣

2
5
−6

5
0
1

⎤
⎥⎥⎦ , a2, a3 ∈ R,

so { 3
10 − 6

5x+ x2, 25 − 6
5x+ x3} is a basis for {1, x}⊥.
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5. (15 points) Let H be a complex inner product space endowed with the product 〈·, ·〉. Let
{v1, . . . , vk} be linearly independent vectors and consider the k×k matrix A with elements

aij = 〈vi, vj〉.
(This is called a Gram matrix.)

(a) Show that A is Hermitian. (This is defined as A
Tr

= A.)
Since aji = 〈vj , vi〉 = 〈vi, vj〉 = aij , the result is straightforward.

(b) If c ∈ Ck
c , find v ∈ H such that

‖v‖2 = cTrAc.

Show that cTrAc ≥ 0 and cTrAc = 0 if and only if c = 0.
Using sesquilinearity, we show that

cTrAc =
∑
ij

ci〈vi, vj〉cj = 〈
∑
i

civi,
∑
j

cjvj〉 = ‖v‖2, v =
∑
j

cjvj .

Therefore cTrAc ≥ 0 for all c. If cTrAc = 0, then v =
∑

j cjvj = 0, but given that the
vectors vj are linearly independent (they are orthonormal), it follows that cj = 0 for all
j.

(c) By looking at the matrix A, how can you know if the set {v1, . . . , vk} is orthogo-
nal/orthonormal?
The set is orthogonal if and only if A is diagonal. It is orthonormal if and only if A = I.

6. (10 points) The parallelogram law. Show that if H is an inner product space with inner
product 〈·, ·〉, then its associated norm ‖ · ‖ satisfies:

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

This is a very easy proof using (sesqui)linearity:

‖u+ v‖2 + ‖u− v‖2 =〈u+ v, u+ v〉+ 〈u− v, u− v〉
=‖u‖2 + 〈v, u〉+ 〈u, v〉+ ‖v‖2
+ ‖u‖2 − 〈v, u〉 − 〈u, v〉+ ‖v‖2

=2‖u‖2 + 2‖v‖2.

7. (10 points) The real polarization formula. Let H be a real vector space endowed with
a norm ‖·‖ satisfying the parallelogram law (in addition to the axioms that define a norm):

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).
Show that

〈u, v〉 = 1

4
(‖u+ v‖2 − ‖u− v‖2)

is an inner product in H whose associated norm is ‖ · ‖. (You have to prove that the
bracket 〈·, ·〉 satisfies all the axioms that define a real inner product.)
We first note that (using the property ‖w‖ = ‖ − w‖)

〈v, u〉 = 1
4(‖v + u‖2 − ‖v − u‖2) = 1

4(‖u+ v‖2 − ‖u− v‖2) = 〈u, v〉,
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that is we have symmetry. Also

〈u, u〉 = 1
4‖2u‖2 = ‖u‖2,

so 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0. (This follows from the axioms defining a
norm.)

Linearity in the first variable (the only one we need to check) is quite tricky. We first prove
the following:

〈u1, v1〉+ 〈u2, v2〉 =1
4

(‖u1 + v1‖2 + ‖u2 + v2‖2 − ‖u1 − v1‖2 − ‖u2 − v2‖2
)

(definition)

=1
8

(‖u1 + u2 + v1 + v2‖2 + ‖u1 − u2 + v1 − v2‖2
− ‖u1 + u2 − v1 − v2‖2 − ‖u1 − u2 − v1 + v2‖2

)2
(parallelogram law)

=1
2

(〈u1 + u2, v1 + v2〉+ 〈u1 − u2, v1 − v2〉
)
.

For easy reference, we repeat the formula:

〈u1, v1〉+ 〈u2, v2〉 = 1
2

(〈u1 + u2, v1 + v2〉+ 〈u1 − u2, v1 − v2〉
)
. (1)

Using (1) we obtain
〈u, v〉 = 〈u, v〉+ 〈u, 0〉 = 1

2〈2u, v〉
(since 〈u, 0〉 = 0 as follows from the definition of the bracket), and by symmetry

〈2u, v〉 = 2〈u, v〉 = 〈u, 2v〉. (2)

Therefore

〈u1, v〉+ 〈u2, v〉 =1
2〈u1 + u2, 2v〉 (by (1) and 〈w, 0〉 = 0)

=〈u1 + u2, v〉, (by (2))

which proves additivity in the first variable. Using this property n− 1 times, we show that

〈nu, v〉 = 〈u+ . . .+ u, v〉 = n〈u, v〉 ∀n ∈ Z, n ≥ 0,

and also
〈u, v〉+ 〈−u, v〉 = 0

so
〈nu, v〉 = n〈u, v〉 ∀n ∈ Z. (3)

Applying this to w = nu, we obtain

1
n〈w, v〉 = 〈 1nw, v〉 ∀0 �= n ∈ Z. (4)

As a simple consequence of (3) and (4), we can show

〈qu, v〉 = q〈u, v〉 ∀q ∈ Q. (5)

The extension of (5) to real scalars need a continuity argument. Note first that

〈u, v〉 =1
2(‖u+ v‖2 − ‖u‖2 − ‖v‖2) (parallelogram law)

≤1
2

(
(‖u‖+ ‖v‖)2 − ‖u‖2 − ‖v‖2) (triangle inequality)

=‖u‖‖v‖,
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which (after applying this inequality to −u and v, noticing that ‖ − u‖ = ‖u‖), yileds the
Cauchy-Schwarz inequality

|〈u, v〉| ≤ ‖u‖‖v‖.
Finally, let r ∈ R and q ∈ Q. Then

|〈ru, v〉 − r〈u, v〉| =|〈ru, v〉 − 〈qu, v〉 − (r − q)〈u, v〉| (by (5))

=|〈(r − q)u, v〉 − (r − q)〈u, v〉| (additivity)

≤|〈(r − q)u, v〉|+ |r − q||〈u, v〉|
≤‖(r − q)u‖‖v‖+ |r − q|‖u‖‖v‖ (Cauchy-Schwarz)

=2|r − q|‖u‖‖v‖.

Since we can take a sequence of rational numbers qn ∈ Q such that limn→∞ |r − qn| = 0, ti
follows that

〈ru, v〉 = r〈u, v〉.
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