MATH 672: Vector spaces

Fall'13
Quiz \# 8
Partial solutions

1. (30 points) Let $T \in \mathcal{L}(\mathcal{V}),\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for \mathcal{V} and assume that

$$
T v_{j}=v_{1}+v_{2}+\ldots+v_{n} \quad \forall j .
$$

(a) Show that $v_{1}+\ldots+v_{n}$ is an eigenvector.

This is quite obvious by linearity

$$
T\left(v_{1}+v_{2}+\ldots+v_{n}\right)=n\left(v_{1}+v_{2}+\ldots+v_{n}\right)
$$

(b) Compute $\nu(T)$.

The matrix associated to T in basis $\left\{v_{1}, \ldots, v_{n}\right\}$ is

$$
A=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

Its rank is clearly one, so $\nu(T)=n-1$.
(c) Using the results of (a) and (b) (no computations are required), give χ_{T}.

From (a), $\lambda=n$ is an eigenvalue, and from (b) we have $n-1$ linearly independent eigenvectors for $\lambda=0$. Therefore

$$
\chi_{T}(\lambda)=(-1)^{n}(\lambda-n) \lambda^{n-1} .
$$

(d) Show that T is diagonalizable.

This follows directly from (a) and (b), since we can find a basis composed of n linearly independent eigenvectors. Actually, it is easy to show that

$$
\left\{v_{1}+\ldots+v_{n}, v_{2}-v_{1}, \ldots, v_{n}-v_{1}\right\}
$$

is one such basis.
(e) Compute $\operatorname{minP}_{T, v_{j}}$ for all j. (Hint. This is very easy using the definition.) We have

$$
T^{2} v_{j}=T\left(v_{1}+\ldots+v_{n}\right)=n\left(v_{1}+\ldots+v_{n}\right)=n T v_{j}
$$

so $\operatorname{minP}_{T, v_{j}}(\lambda)$ is a multiple of $\lambda(\lambda-n)$. However, since v_{j} is not en eigenvector, it cannot be any proper divisor, and therefore $\operatorname{minP}_{T, v_{j}}(\lambda)=\lambda(\lambda-n)$.
(f) Write (and argument) what minP_{T} is.

Since all basis vectors have the same minimal polynomial, it follows that $\operatorname{minP}_{T}=$ $\operatorname{minP}_{T, v_{j}}$ for all j.
2. (15 points) Let A be such that

$$
A^{2}=4 A-4 I .
$$

(a) What is the characteristic polynomial of A ? (Prove your assertion.)

We have that $P(\lambda)=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}$ satisfies $P(A)=0$. Therefore the only possible root of χ_{A} is $\lambda=2$ and $\chi_{A}(\lambda)=(2-\lambda)^{n}$
(b) What are the possible minimal polynomials of A ?

It can only be $\lambda-2$ and $(\lambda-2)^{2}$.
(c) Show that either A is diagonal or it is not diagonalizable.

If $\operatorname{minP}_{A}(\lambda)=\lambda-2$, then $A=2 I$. Otherwise, A cannot be diagonalizable, since its only possible eigenvalue is 2 and in case of being diagonalizable it would be similar to $2 I$ which is only similar to itself.
3. (10 points) Let $T \in \mathcal{L}(\mathcal{V})$ be given by its action on a basis

$$
T v_{1}=2 v_{1}, \quad T v_{2}=\alpha v_{1}+2 v_{2}, \quad T v_{3}=\beta v_{1}+\gamma v_{2}+5 v_{3} .
$$

Show that T is diagonalizable if and only if $\alpha=0$. (Hint. There is no need to compute eigenvectors. You just need to count how many linearly independent eigenvectors there are.)
The associated matrix is

$$
A=\left[\begin{array}{lll}
2 & \alpha & \beta \\
0 & 2 & \gamma \\
0 & 0 & 5
\end{array}\right]
$$

and therefore $\chi_{T}(\lambda)=(2-\lambda)^{2}(5-\lambda)$. It is clear that dim $\operatorname{ker}(A-5 I)=1$. Also

$$
\rho(A-2 I)= \begin{cases}2 & \text { if } \alpha \neq 0, \\ 1 & \text { if } \alpha=0,\end{cases}
$$

which proves that

$$
\operatorname{dim} \operatorname{ker}(A-2 I)=\nu(T-2 I)=3-\rho(A-2 I)= \begin{cases}1 & \text { if } \alpha \neq 0 \\ 2 & \text { if } \alpha=0\end{cases}
$$

and this finishes the proof.
4. (10 points) In $\mathbb{R}_{3}[x]$ we consider the inner product

$$
\langle p, q\rangle=\int_{0}^{1} x p(x) q(x) d x .
$$

Compute a basis for $\{1, x\}^{\perp}$.
This is equivalent to finding all polynomials $p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ such that

$$
\frac{1}{2} a_{0}+\frac{1}{3} a_{1}+\frac{1}{4} a_{2}+\frac{1}{5} a_{3}=0, \quad \frac{1}{3} a_{0}+\frac{1}{4} a_{2}+\frac{1}{5} a_{2}+\frac{1}{6} a_{3}=0 .
$$

The solutions to this system are

$$
a_{2}\left[\begin{array}{c}
\frac{3}{10} \\
-\frac{6}{5} \\
1 \\
0
\end{array}\right]+a_{2}\left[\begin{array}{c}
\frac{2}{5} \\
-\frac{6}{5} \\
0 \\
1
\end{array}\right], \quad a_{2}, a_{3} \in \mathbb{R},
$$

so $\left\{\frac{3}{10}-\frac{6}{5} x+x^{2}, \frac{2}{5}-\frac{6}{5} x+x^{3}\right\}$ is a basis for $\{1, x\}^{\perp}$.
5. (15 points) Let \mathcal{H} be a complex inner product space endowed with the product $\langle\cdot, \cdot\rangle$. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be linearly independent vectors and consider the $k \times k$ matrix A with elements

$$
a_{i j}=\left\langle v_{i}, v_{j}\right\rangle .
$$

(This is called a Gram matrix.)
(a) Show that A is Hermitian. (This is defined as $\bar{A}^{T r}=A$.)

Since $\bar{a}_{j i}=\overline{\left\langle v_{j}, v_{i}\right\rangle}=\left\langle v_{i}, v_{j}\right\rangle=a_{i j}$, the result is straightforward.
(b) If $c \in \mathbb{C}_{c}^{k}$, find $v \in \mathcal{H}$ such that

$$
\|v\|^{2}=\bar{c}^{T r} A c .
$$

Show that $\bar{c}^{T r} A c \geq 0$ and $\bar{c}^{T r} A c=0$ if and only if $c=0$.
Using sesquilinearity, we show that

$$
\bar{c}^{T r} A c=\sum_{i j} \bar{c}_{i}\left\langle v_{i}, v_{j}\right\rangle c_{j}=\left\langle\sum_{i} \bar{c}_{i} v_{i}, \sum_{j} \bar{c}_{j} v_{j}\right\rangle=\|v\|^{2}, \quad v=\sum_{j} \bar{c}_{j} v_{j} .
$$

Therefore $\bar{c}^{T r} A c \geq 0$ for all c. If $\bar{c}^{T r} A c=0$, then $v=\sum_{j} \bar{c}_{j} v_{j}=0$, but given that the vectors v_{j} are linearly independent (they are orthonormal), it follows that $c_{j}=0$ for all j.
(c) By looking at the matrix A, how can you know if the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is orthogonal/orthonormal?
The set is orthogonal if and only if A is diagonal. It is orthonormal if and only if $A=I$.
6. (10 points) The parallelogram law. Show that if \mathcal{H} is an inner product space with inner product $\langle\cdot, \cdot\rangle$, then its associated norm $\|\cdot\|$ satisfies:

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

This is a very easy proof using (sesqui)linearity:

$$
\begin{aligned}
\|u+v\|^{2}+\|u-v\|^{2}= & \langle u+v, u+v\rangle+\langle u-v, u-v\rangle \\
= & \|u\|^{2}+\langle v, u\rangle+\langle u, v\rangle+\|v\|^{2} \\
& +\|u\|^{2}-\langle v, u\rangle-\langle u, v\rangle+\|v\|^{2} \\
= & 2\|u\|^{2}+2\|v\|^{2} .
\end{aligned}
$$

7. (10 points) The real polarization formula. Let \mathcal{H} be a real vector space endowed with a norm $\|\cdot\|$ satisfying the parallelogram law (in addition to the axioms that define a norm):

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) .
$$

Show that

$$
\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)
$$

is an inner product in \mathcal{H} whose associated norm is $\|\cdot\|$. (You have to prove that the bracket $\langle\cdot, \cdot\rangle$ satisfies all the axioms that define a real inner product.)
We first note that (using the property $\|w\|=\|-w\|$)

$$
\langle v, u\rangle=\frac{1}{4}\left(\|v+u\|^{2}-\|v-u\|^{2}\right)=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)=\langle u, v\rangle,
$$

that is we have symmetry. Also

$$
\langle u, u\rangle=\frac{1}{4}\|2 u\|^{2}=\|u\|^{2}
$$

so $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0$ if and only if $u=0$. (This follows from the axioms defining a norm.)
Linearity in the first variable (the only one we need to check) is quite tricky. We first prove the following:

$$
\begin{array}{rlr}
\left\langle u_{1}, v_{1}\right\rangle+\left\langle u_{2}, v_{2}\right\rangle= & \frac{1}{4}\left(\left\|u_{1}+v_{1}\right\|^{2}+\left\|u_{2}+v_{2}\right\|^{2}-\left\|u_{1}-v_{1}\right\|^{2}-\left\|u_{2}-v_{2}\right\|^{2}\right) & \quad \text { (definition) } \\
=\frac{1}{8}\left(\left\|u_{1}+u_{2}+v_{1}+v_{2}\right\|^{2}+\left\|u_{1}-u_{2}+v_{1}-v_{2}\right\|^{2}\right. & \\
& \left.\quad-\left\|u_{1}+u_{2}-v_{1}-v_{2}\right\|^{2}-\left\|u_{1}-u_{2}-v_{1}+v_{2}\right\|^{2}\right)^{2} \quad \text { (parallelogram law) } \\
= & \frac{1}{2}\left(\left\langle u_{1}+u_{2}, v_{1}+v_{2}\right\rangle+\left\langle u_{1}-u_{2}, v_{1}-v_{2}\right\rangle\right) .
\end{array}
$$

For easy reference, we repeat the formula:

$$
\begin{equation*}
\left\langle u_{1}, v_{1}\right\rangle+\left\langle u_{2}, v_{2}\right\rangle=\frac{1}{2}\left(\left\langle u_{1}+u_{2}, v_{1}+v_{2}\right\rangle+\left\langle u_{1}-u_{2}, v_{1}-v_{2}\right\rangle\right) \tag{1}
\end{equation*}
$$

Using (1) we obtain

$$
\langle u, v\rangle=\langle u, v\rangle+\langle u, 0\rangle=\frac{1}{2}\langle 2 u, v\rangle
$$

(since $\langle u, 0\rangle=0$ as follows from the definition of the bracket), and by symmetry

$$
\begin{equation*}
\langle 2 u, v\rangle=2\langle u, v\rangle=\langle u, 2 v\rangle \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\left\langle u_{1}, v\right\rangle+\left\langle u_{2}, v\right\rangle & =\frac{1}{2}\left\langle u_{1}+u_{2}, 2 v\right\rangle & & (\text { by }(1) \text { and }\langle w, 0\rangle=0) \\
& =\left\langle u_{1}+u_{2}, v\right\rangle, & & (\text { by }(2))
\end{aligned}
$$

which proves additivity in the first variable. Using this property $n-1$ times, we show that

$$
\langle n u, v\rangle=\langle u+\ldots+u, v\rangle=n\langle u, v\rangle \quad \forall n \in \mathbb{Z}, \quad n \geq 0
$$

and also

$$
\langle u, v\rangle+\langle-u, v\rangle=0
$$

so

$$
\begin{equation*}
\langle n u, v\rangle=n\langle u, v\rangle \quad \forall n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

Applying this to $w=n u$, we obtain

$$
\begin{equation*}
\frac{1}{n}\langle w, v\rangle=\left\langle\frac{1}{n} w, v\right\rangle \quad \forall 0 \neq n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

As a simple consequence of (3) and (4), we can show

$$
\begin{equation*}
\langle q u, v\rangle=q\langle u, v\rangle \quad \forall q \in \mathbb{Q} \tag{5}
\end{equation*}
$$

The extension of (5) to real scalars need a continuity argument. Note first that

$$
\begin{aligned}
\langle u, v\rangle & =\frac{1}{2}\left(\|u+v\|^{2}-\|u\|^{2}-\|v\|^{2}\right) & & \text { (parallelogram law) } \\
& \leq \frac{1}{2}\left((\|u\|+\|v\|)^{2}-\|u\|^{2}-\|v\|^{2}\right) & & \text { (triangle inequality) } \\
& =\|u\|\|v\| & &
\end{aligned}
$$

which (after applying this inequality to $-u$ and v, noticing that $\|-u\|=\|u\|$), yileds the Cauchy-Schwarz inequality

$$
|\langle u, v\rangle| \leq\|u\|\|v\|
$$

Finally, let $r \in \mathbb{R}$ and $q \in \mathbb{Q}$. Then

$$
\begin{array}{rlrl}
|\langle r u, v\rangle-r\langle u, v\rangle| & =|\langle r u, v\rangle-\langle q u, v\rangle-(r-q)\langle u, v\rangle| \\
& =|\langle(r-q) u, v\rangle-(r-q)\langle u, v\rangle| & & \text { (by }(5)) \\
& \leq|\langle(r-q) u, v\rangle|+|r-q \||\langle u, v\rangle| \\
& \leq\|(r-q) u\|\|v\|+|r-q|\|u\|\| \| v \| \\
& & & \\
& =2|r-q|\|u\|\|v\| . & & \\
& \text { (Cauchy-Schwarz) } \\
&
\end{array}
$$

Since we can take a sequence of rational numbers $q_{n} \in \mathbb{Q}$ such that $\lim _{n \rightarrow \infty}\left|r-q_{n}\right|=0$, ti follows that

$$
\langle r u, v\rangle=r\langle u, v\rangle
$$

