
MATH 806: Functional analysis

Fall 2015 Midterm exam (in-class part) October 19

1. (10 points) Let (φn)n≥1 be an orthonormal sequence in an infinite dimensional Hilbert
space.

(a) State Bessel’s inequality.

Solution. If H is a Hilbert space and (φn)n≥1 is an orthonormal sequence,
then

∞∑
n=1

|(x, φn)|2 ≤ ‖x‖2 ∀x ∈ H,

(where (·, ·) and ‖ · ‖ are the inner product in H and the associated norm).

(b) Define what we mean when we say that (φn)n≥1 is a complete orthonormal sequence.

Solution. One possible definition: the set cannot be extended to a larger
orthonormal set. Also

(x, φn) = 0 ∀n ≥ =⇒ x = 0.

(c) What happens to Bessel’s inequality when (φn)n≥1 is a complete orthonormal se-
quence?

Solution. It becomes an equality for every x. (That is another equivalent
definition of complete orthonormal set.)

2. (10 points) Prove that in an inner product space H

‖x‖ = sup
06=y∈H

|(x, y)|
‖y‖

∀x ∈ H.

Solution. The result needs to be proved for x 6= 0, since it is straightforward for
x = 0. Then

‖x‖ =
|(x, x)|
‖x‖

≤ sup
06=y∈H

|(x, y)|
‖y‖

≤ sup
0 6=y∈H

‖x‖ ‖y‖
‖y‖

= ‖x‖,

by the Cauchy-Schwarz inequality.

3. (10 points) Let (xn)n≥1 be a sequence in a normed space X. Prove that if xn → x, then
xn ⇀ x.

Solution. If xn → x and φ : X → K is continuous, then φ(xn) → φ(x). Since
this is true for all φ ∈ X∗, it follows (by definition) that xn ⇀ x.

4. (10 points) Let X be a Banach space and let the sequence (xn)n≥1 satisfy xn ⇀ x and
xn ⇀ y. Show that x = y.
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Solution. If xn ⇀ x and xn ⇀ y, then

φ(xn)→ φ(x) and φ(xn)→ φ(y) ∀φ ∈ X∗.

Since the limit is unique in K, it follows that φ9x) = φ(y) for all φ ∈ X∗. By the
separation theorem, if x 6= y, then there exists φ ∈ X∗ such that φ(x) 6= φ(y).
Therefore x = y and the proof is finished.

5. (10 points) State Minkowski’s inequality for sequences.

Solution. For every couple of sequences of complex numbers( ∞∑
n=1

|an + bn|p
)1/2

≤

( ∞∑
n=1

|an|p
)1/2

+

( ∞∑
n=1

|bn|p
)1/2

.

6. (10 points) Consider the space of finite sequences

f := {(xn)n≥1 : xn ∈ C, xn = 0 ∀n ≥ N, for some N}.

Show that f is dense in `p for all p ∈ [1,∞) but f is not dense in `∞.

Solution. If x = (xn)n≥1 ∈ `p, with 1 ≤ p <∞, then

lim
N

∞∑
n=N+1

|xn|p = 0.

Let now yN := (x1, . . . , xN , 0, 0, . . .) ∈ f . Then

‖yN − x‖p`p =
∞∑

n=N+1

|xn|p → 0,

which proves that we can find a sequence of elements of f converging to x for every
x ∈ `p. Therefore f is dense in `p. When p =∞, we can take x = (1, 1, . . . , 1, . . .).
If y ∈ f , then yn = 0 for all n > N for some N and

‖y − x‖`∞ = sup
n
|yn − xn| ≥

∑
n≥N+1

|xn| = 1.

This proves that x cannot be approximated by any finite sequence.

7. (10 points) Starting on the inequality (do not prove it), valid for q ≥ p ≥ 1,(
N∑
n=1

|xn|q
)1/q

≤

(
N∑
n=1

|xn|p
)1/p

∀x1, . . . , xN ∈ C, ∀N,

show that the inclusion operator i : `p → `q, given by ix := x, is bounded. What is the
norm of this operator?

2



Solution. If x = (xn)n≥1 ∈ `p, then(
N∑
n=1

|xn|q
)1/q

≤

(
N∑
n=1

|xn|p
)1/p

≤

( ∞∑
n=1

|xn|p
)1/p

∀N,

and therefore ‖x‖`q ≤ ‖x‖`p . In particular, this proves that the operator i is well
defined, it is bounded (it is clearly linear) and satisfies ‖i‖ ≤ 1. However, if x =
(1, 0, . . . , 0, . . .), then ‖x‖`p = 1 = ‖x‖`q , which proves that ‖i‖ = 1.

8. (10 points) Let a := (an)n≥1 ∈ `∞ and consider the operator Ma : `∞ → `∞ given by

(Max)n := an xn ∀n ≥ 1.

Show that Ma ∈ B(`∞; `∞) and ‖Ma‖ = ‖a‖`∞ .

Solution. Linearity is simple to show: for any two sequences x, y ∈ `∞ and
α, β ∈ K,

(Ma(αx+ βy))n = an(αxn + βyn) = αanxn + βanyn = α(Max)n + β(May)n.

Also
|anxn| ≤ ‖a‖`∞‖x‖`∞ ∀n

and taking the supremum in the left-hand-side, it follows that ‖Max‖`∞ ≤ ‖a‖`∞‖x‖`∞ .
This proves boundedness of Ma and ‖Ma‖ ≤ ‖a‖`∞ . Finally, take x = (1, 1, . . .)
and note that Max = a, while ‖x‖`∞ = 1. Therefore

‖Ma‖ ≥ ‖Max‖`∞ = ‖a‖`∞ .

9. (10 points) Let K ∈ L∞(Ω × Ω), where Ω is an open bounded subset of Rd. Show that
the operator

(Pf)(x) :=

∫
Ω
K(x, y) f(y) dy

is bounded from L1(Ω) to Lp(Ω) for all p ∈ [1,∞].

Solution. For almost every x and y, |K(x, y)| ≤ M , and therefore for almost
every x:

|(Pf)(x)| ≤
∫

Ω
|K(x, y)| |f(y)|dy ≤M

∫
Ω
|f(y)|dy = M‖f‖L1(Ω).

If p <∞, then ∫
Ω
|(Pf)(x)|pdx ≤Mp‖f‖p

L1(Ω)
|Ω|,

where |Ω| is the measure of Ω. Therefore

‖Pf‖Lp(Ω) ≤M |Ω|1/p‖f‖L1(Ω) ∀f ∈ L1(Ω).

This proves that P is bounded from L1(Ω) to Lp(Ω) and ‖P‖ ≤M |Ω|1/p. (We can
put M = ‖K‖L∞(Ω×Ω).) If p =∞, the first inequality we have proved shows that

‖Pf‖L∞(Ω) ≤M‖f‖L1(Ω) ∀f ∈ L1(Ω).

This proves that P is bounded from L1(Ω) to L∞(Ω) and ‖P‖ ≤M.
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10. (10 points) Let X be a normed space, 0 6= x0 ∈ X, and c ∈ Rn. Show that there exists
Λ : X → Rn linear and bounded satisfying Λx0 = c.

Solution. Using the separation theorem (or any version of the extension theo-
rems), we can find φ ∈ X∗ such that φ(x0) 6= 0. Therefore

Λx :=
φ(x)

φ(x0)
c

satisfies the requirements. It is clearly linear and bounded, since

1

φ(x0)
φ ∈ X∗

and the map R→ Rn given by t 7→ t c is linear (and bounded). Finally Λx0 = c.
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MATH 806: Functional analysis

Fall 2015 Midterm exam (take home part) Due October 26

1. (5 points) Let X and Y be Banach spaces and let (Λn)n≥1 be a sequence in B(X;Y ). Show
that if there exists x such that ‖Λnx‖ → ∞, then supn ‖Λn‖ =∞.

Solution. If ‖Λn‖ ≤ C for all n, then ‖Λnx‖ ≤ C‖x‖ for all x and, therefore,
‖Λnx‖ cannot diverge.

2. (5 points) Let X and Y be Banach spaces. Show that if Λ ∈ B(X;Y ), then

xn ⇀ x =⇒ Λxn ⇀ Λx.

Solution. Given φ ∈ Y ∗, the map φΛ : X → K is linear and bounded, that is,
φΛ ∈ X∗. Therefore

φ(Λxn) = (φΛ)(xn)→ (φΛ)(x) = φ(Λx) ∀φ ∈ Y ∗,

which means that Λxn ⇀ Λx.

3. (5 points) Let X and Y be normed spaces. Let Λ : X → Y be linear. Assume that we
have defined boundedness as follows: Λ is bounded when the image of B(0; 1) := {x ∈ X :
‖x‖ < 1} is bounded in Y . Show that Λ is bounded if and only if the image by Λ of any
bounded set of X is bounded in Y .

Solution. One implication is straightforward, since B(0; 1) is bounded. Let
U ⊂ X be bounded. Then U ⊂ B(0;R) for R > 0 large enough. Since

‖Λx‖ ≤ C ∀x ∈ B(0; 1),

then
‖Λ( 1

Rz)‖ ≤ C ∀z ∈ B(0;R)

and, by linearity
‖Λz‖ ≤ RC ∀z ∈ B(0;R).

This implies that Λ(U) ⊂ BY (0;C R).

4. The set of invertible operators is open. (4 × 5 points) Let X and Y be Banach
spaces.

(a) The Neumann series. Show that if Λ ∈ B(X;X) satisfies ‖Λ‖ < 1, then the series

∞∑
n=0

Λn

converges. (Here Λ0 = I is the identity operator.) Give an upper bound for the norm
of the sum of the series.
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Solution. Note that ‖Λn‖ ≤ ‖λ‖n. (This can be easily proved by induction.)
Therefore, for N > M , ∥∥∥∥∥

N∑
n=M+1

Λn

∥∥∥∥∥ ≤
N∑

n=M+1

‖Λ‖n.

Since the following geometric series converges

∞∑
n=0

‖Λ‖n =
1

1− ‖Λ‖
,

given the fact that ‖Λ‖ < 1, then the estimate above shows that the sequence
of partial sums SN :=

∑N
n=0 Λn is Cauchy in B(X;X). However, B(X;X) is

Banach (since X is Banach) and this implies convergence of the series

SN → S :=

∞∑
n=0

Λn.

With the same arguments we can prove that

‖SN‖ =

∥∥∥∥∥
N∑
n=0

Λn

∥∥∥∥∥ ≤
N∑
n=0

‖Λ‖n ≤
∞∑
n=0

‖Λ‖n =
1

1− ‖Λ‖
∀N,

and, since SN → S, then ‖SN‖ → ‖S‖ ≤ 1/(1− ‖Λ‖).

(b) Show that

(I − Λ)−1 =
∞∑
n=0

Λn.

Solution. Let SN be as in (a). Then

(I − Λ)SN = I − ΛN+1.

Since ‖(I − Λ)(SN − S)‖ ≤ ‖I − Λ‖‖SN − S‖, it follows from the above that

(I − Λ)SN → (I − Λ)S (I − Λ)SN = I − ΛN+1 → I

(note that ‖ΛN+1‖ ≤ ‖Λ‖N+1), which proves that (I − Λ)S = I. A similar
argument shows that S(I − Λ) = I.

(c) Let A ∈ B(X;Y ) be invertible. Show that if B ∈ B(X;Y ) satisfies

‖B‖ < 1

‖A−1‖
,

then A−B is invertible. (Hint. A−B = A(I −A−1B).)

Solution. By (b), using that ‖A−1B‖ ≤ ‖A−1‖ ‖B‖ < 1, it follows that
I − A−1B is invertible. Since A is invertible, A(I − A−1B) = A − B is also
invertible.

(d) Use (c) to show that the set

{Λ ∈ B(X;Y ) : Λ is invertible}

is open in B(X;Y ).
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Solution. If A is invertible, by (c), so is A − B for every B such that
‖B‖ < 1/‖A−1‖. Therefore the ball B(A; 1

‖A−1‖) is contained in the set of

invertible operators. This proves that the set of invertible operators is open.

5. Extension of a densely defined operator. (5 × 5 points) Let X and Y be Banach
spaces and let Λ : D(Λ) → Y be a linear operator defined on a subspace D(Λ) ⊂ X
satisfying:

D(Λ) = X ‖Λx‖Y ≤ C‖x‖X ∀x ∈ D(Λ).

(a) Given x ∈ X and a sequence (xn)n≥1 in D(Λ) such that x = limn xn, show that the
limit

lim
n

Λxn

exists.

Solution. From the inequality

‖Λ(xn − xm)‖Y ≤ C‖xn − xm‖X ,

it is clear that the sequence (Λxn)n≥1 is Cauchy, and therefore convergent, in
Y .

(b) Show that if limn xn = x = limn x
′
n, where (xn)n≥1 and (x′n)n≥1 are sequences in

D(Λ), then
lim
n

Λxn = lim
n

Λx′n.

(Hint. Consider the sequence (x1, x
′
2, x3, x

′
4, ....).)

Solution. For all ε > 0, there exists N such that

‖x− xn‖ < ε ‖x− x′n‖ < ε ∀n ≥ N.

Ths proves that the combined sequence

x̃n :=

{
xn if n is odd,

x′n if n is even,

is convergent to x. Therefore lim Λx̃n exists. However, this sequence con-
tains the subsequences (Λx2n−1)n≥1 and (Λx′2n)n≥1, so both converge to the
same limit. Since these subsequences are also respective subsequences of the
convergent sequences (Λxn)n≥1 and (Λx′n)n≥1, the limits of the latter have to
coincide.

We then define Ax := limn Λxn.

(c) Show that Ax = Λx for x ∈ D(Λ).

Solution. If x ∈ D(Λ), we can take the sequence with elements xn := x for
all n. Therefore Ax = lim Λxn = lim Λx = Λx.

(d) Show that
‖Ax‖Y ≤ C‖x‖X ∀x ∈ X.
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Solution. If (xn)n≥1 is a sequence of elements of D(Λ) converging to x ∈ X,
then ‖xn‖X → ‖x‖X and ‖Λxn‖Y → ‖Ax‖Y . Taking the limit in the inequality

‖Axn‖Y ≤ C‖xn‖X ∀n,

the result follows.

(e) Show that if B ∈ B(X;Y ) satisfies

Bx = Λx ∀x ∈ D(Λ),

then B = A.

Solution. Let (xn)n≥1 be a sequence in D(Λ) converging to x. Then, since
A and B are linear and bounded Ax = limAxn and Bx = limBxn. However,
since xn ∈ D(Λ) and A and B extend Λ, then Axn = Λxn = Bxn and the
result is proved.

6. The space C∞(R). (20 points) Consider the space X := C∞(R) of infinitely differentiable
functions of a real variable. Define a metric in X with the following property: fn → f if
and only if

f (j)
n → f (j) uniformly on compact sets of R, for all j ≥ 0.

(Prove that the metric you define has actually that property.) Show that X is a Fréchet
space when endowed with such a metric. (Note that there are many metrics providing the
same concept of convergence in X.)

Solution. [Sketch only]

(a) Construction. Take Ik := [−k, k] and the seminorms

|f |k := max
`≤k

max
x∈Ik
|f (`(x)| = max

`≤k
‖f (`)‖L∞(Ik).

This is a separating sequence of seminorms: to show it, note that if |f |k = 0, then
f ≡ 0 in Ik and ∪kIk = R. We then build the metric

d(f, g) :=

∞∑
k=1

1

2k
|f − g|k

1 + |f − g|k
.

This construction is abstract and always leads to a metric space where convergence
of sequence is equivalent to

lim
n
|fn − f |k = 0 ∀k.

(b) Characterization of convergence. It is clear that uniform convergence on compact

sets of (f
(`)
n )n≥1 for all ` implies that for given k, |fn− f |k → 0. (This follows from

the fact that only k + 1 derivatives are involved here and we have restricted our
attention to the interval Ik. Let now M be a compact set in R and let ` be a
fixed integer. We then take k such that ` ≤ k and M ⊂ [−k, k] = Ik. Since

|fn − f |k → 0, then f
(`)
n → f (`) uniformly in Ik and, therefore, in M .
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(c) ‘Fréchetness.’ Let (fn)n≥1 be Cauchy in X. The general argument that works
for all constructions of metric spaces from sequences of seminorms shows that this
implies that for all ε > 0 and k ≥ 0, there exists N such that

|fn − fm|k < ε ∀n,m ≥ N.

In a first instance, we only focus in the function without derivatives.

‖fn − fm‖L∞(Ik) ≤ |fn − fm|k < ε ∀n,m ≥ N.

This proves that fn converges uniformly to a continuous function in Ik. If we look
at the interval Ik+1, we prove that fn|Ik+1

converges uniformly to a continuous
function in Ik+1. By induction, we have fn → f uniformly in Ik for all k, where the
limit does not depend on k. We can now repeat the same argument with all the
derivatives.

7. Diagonal operators in separable Hilbert spaces. (4× 5 points) Let H be a complex
separable Hilbert space and let (φn)n≥1 be a Hilbert basis of H. Consider a sequence
λ := (λn)n≥1 ∈ `∞ and the operator defined with the series

Λx :=

∞∑
n=1

λn(x, φn)φn.

(a) Show that Λ is bounded and
‖Λ‖ ≤ ‖λ‖`∞ .

Solution. We can easily estimate (the sum is orthogonal) for all M > N and
x ∈ X:∥∥∥∥∥

M∑
n=N+1

λn(x, φn)φn

∥∥∥∥∥
2

=
M∑

n=N+1

|λn|2|(x, φn)|2 ≤ ‖λ‖2`∞
M∑

n=N+1

|λn|2|(x, φn)|2.

Since, by Parseval’s identity,

N∑
n=1

|(x, φn)|2 = ‖x‖2

it follows that the partial sums ΛNx :=
∑N

n=1 λn(x, φn)φn are Cauchy and,
therefore, convergent. We can then bound

‖ΛNx‖2 =

∥∥∥∥∥
N∑
n=1

λn(x, φn)φn

∥∥∥∥∥
2

=
N∑
n=1

|λn|2|(x, φn)|2 ≤ ‖λ‖2`∞‖x‖2 ∀x, ∀N

and take the limit as N →∞, showing that ‖Λx‖ ≤ ‖λ‖`∞‖x‖ for all x. Since
Λ is linear (this is very easy to check), then Λ is bounded and ‖Λ‖ ≤ ‖λ‖`∞ .

(b) Show that Λ is injective if and only if λn 6= 0 for all n. (Hint. Compute ‖Λx‖ and
study the kernel of Λ.)
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Solution. If λn = 0, then Λφn = λnφn = 0 and Λ is not injective. Assume
now that λn 6= 0 for all n. If Λx = 0, then

∞∑
n=0

|λn|2|(x, φn)|2 = 0,

which implies that (x, φn) = 0 for all n. Since (φn)n≥1 is a Hilbert basis, it
follows that x = 0 and Λ is injective.

(c) Show that Λ is invertible if and only if there exists C > 0 such that |λn| ≥ C.
(Hint. For one implication, construct the inverse. For the other one, use the Banach
Isomorphism Theorem.)

Solution. If Λ is invertible, by the Banach Isomorphism Theorem, Λ−1 is
bounded. Therefore

‖Λ−1x‖ ≤ D‖x‖ ∀x ∈ H.

Taking x = φn and recalling that Λφn = λnφn, it follows that

1

|λn|
≤ D ∀n,

so the result follows with C = 1/D. Assume now that |λn| ≥ C > 0 for all n.
Then, the sequence µn := 1/λn is in `∞ and the operator

Mx :=

∞∑
n=1

µn(x, φn)φn

is well defined and bounded. Note that

(Λx, φn) = λn(x, φn) (Mx, φn) = 1
λn

(x, φn) ∀n, ∀x.

This and the fact that x =
∑

n(x, φn)φn prove that MΛx = ΛMx = x, for all
x.

(d) Consider the sequence of operators defined with the partial sums

ΛNx :=

N∑
n=1

λn(x, φn)φn, N ≥ 1.

Show that if λn → 0, then
‖ΛN − Λ‖ → 0.

Solution. Applying the first result of this series (question (a)) to the sequence
(0, . . . , 0, λN+1, λN+2, . . .), it follows that

‖ΛN − Λ‖ ≤ sup
n≥N+1

|λn|.

However, if λn → 0, the right-hand side of the above converges to zero.
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