MATH 806: Functional analysis

1. (10 points) Let $\left(\phi_{n}\right)_{n \geq 1}$ be an orthonormal sequence in an infinite dimensional Hilbert space.
(a) State Bessel's inequality.

Solution. If H is a Hilbert space and $\left(\phi_{n}\right)_{n \geq 1}$ is an orthonormal sequence, then

$$
\sum_{n=1}^{\infty}\left|\left(x, \phi_{n}\right)\right|^{2} \leq\|x\|^{2} \quad \forall x \in H
$$

(where (\cdot, \cdot) and $\|\cdot\|$ are the inner product in H and the associated norm).
(b) Define what we mean when we say that $\left(\phi_{n}\right)_{n \geq 1}$ is a complete orthonormal sequence.

Solution. One possible definition: the set cannot be extended to a larger orthonormal set. Also

$$
\left(x, \phi_{n}\right)=0 \quad \forall n \geq \quad \Longrightarrow \quad x=0
$$

(c) What happens to Bessel's inequality when $\left(\phi_{n}\right)_{n \geq 1}$ is a complete orthonormal sequence?

Solution. It becomes an equality for every x. (That is another equivalent definition of complete orthonormal set.)
2. (10 points) Prove that in an inner product space H

$$
\|x\|=\sup _{0 \neq y \in H} \frac{|(x, y)|}{\|y\|} \quad \forall x \in H
$$

Solution. The result needs to be proved for $x \neq 0$, since it is straightforward for $x=0$. Then

$$
\|x\|=\frac{|(x, x)|}{\|x\|} \leq \sup _{0 \neq y \in H} \frac{|(x, y)|}{\|y\|} \leq \sup _{0 \neq y \in H} \frac{\|x\|\|y\|}{\|y\|}=\|x\|,
$$

by the Cauchy-Schwarz inequality.
3. (10 points) Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in a normed space X. Prove that if $x_{n} \rightarrow x$, then $x_{n} \rightharpoonup x$.

Solution. If $x_{n} \rightarrow x$ and $\phi: X \rightarrow \mathbb{K}$ is continuous, then $\phi\left(x_{n}\right) \rightarrow \phi(x)$. Since this is true for all $\phi \in X^{*}$, it follows (by definition) that $x_{n} \rightharpoonup x$.
4. (10 points) Let X be a Banach space and let the sequence $\left(x_{n}\right)_{n \geq 1}$ satisfy $x_{n} \rightharpoonup x$ and $x_{n} \rightharpoonup y$. Show that $x=y$.

Solution. If $x_{n} \rightharpoonup x$ and $x_{n} \rightharpoonup y$, then

$$
\phi\left(x_{n}\right) \rightarrow \phi(x) \quad \text { and } \quad \phi\left(x_{n}\right) \rightarrow \phi(y) \quad \forall \phi \in X^{*} .
$$

Since the limit is unique in \mathbb{K}, it follows that $\phi 9 x)=\phi(y)$ for all $\phi \in X^{*}$. By the separation theorem, if $x \neq y$, then there exists $\phi \in X^{*}$ such that $\phi(x) \neq \phi(y)$. Therefore $x=y$ and the proof is finished.
5. (10 points) State Minkowski's inequality for sequences.

Solution. For every couple of sequences of complex numbers

$$
\left(\sum_{n=1}^{\infty}\left|a_{n}+b_{n}\right|^{p}\right)^{1 / 2} \leq\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / 2}+\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{p}\right)^{1 / 2}
$$

6. (10 points) Consider the space of finite sequences

$$
f:=\left\{\left(x_{n}\right)_{n \geq 1}: x_{n} \in \mathbb{C}, \quad x_{n}=0 \quad \forall n \geq N, \quad \text { for some } N\right\} .
$$

Show that f is dense in ℓ^{p} for all $p \in[1, \infty)$ but f is not dense in ℓ^{∞}.
Solution. If $x=\left(x_{n}\right)_{n \geq 1} \in \ell^{p}$, with $1 \leq p<\infty$, then

$$
\lim _{N} \sum_{n=N+1}^{\infty}\left|x_{n}\right|^{p}=0 .
$$

Let now $y_{N}:=\left(x_{1}, \ldots, x_{N}, 0,0, \ldots\right) \in f$. Then

$$
\left\|y_{N}-x\right\|_{\ell^{p}}^{p}=\sum_{n=N+1}^{\infty}\left|x_{n}\right|^{p} \rightarrow 0
$$

which proves that we can find a sequence of elements of f converging to x for every $x \in \ell^{p}$. Therefore f is dense in ℓ^{p}. When $p=\infty$, we can take $x=(1,1, \ldots, 1, \ldots)$. If $y \in f$, then $y_{n}=0$ for all $n>N$ for some N and

$$
\|y-x\|_{\ell \infty}=\sup _{n}\left|y_{n}-x_{n}\right| \geq \sum_{n \geq N+1}\left|x_{n}\right|=1 .
$$

This proves that x cannot be approximated by any finite sequence.
7. (10 points) Starting on the inequality (do not prove it), valid for $q \geq p \geq 1$,

$$
\left(\sum_{n=1}^{N}\left|x_{n}\right|^{q}\right)^{1 / q} \leq\left(\sum_{n=1}^{N}\left|x_{n}\right|^{p}\right)^{1 / p} \quad \forall x_{1}, \ldots, x_{N} \in \mathbb{C}, \quad \forall N
$$

show that the inclusion operator $i: \ell^{p} \rightarrow \ell^{q}$, given by $i x:=x$, is bounded. What is the norm of this operator?

Solution. If $x=\left(x_{n}\right)_{n \geq 1} \in \ell^{p}$, then

$$
\left(\sum_{n=1}^{N}\left|x_{n}\right|^{q}\right)^{1 / q} \leq\left(\sum_{n=1}^{N}\left|x_{n}\right|^{p}\right)^{1 / p} \leq\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p} \quad \forall N
$$

and therefore $\|x\|_{\ell^{q}} \leq\|x\|_{\ell^{p}}$. In particular, this proves that the operator i is well defined, it is bounded (it is clearly linear) and satisfies $\|i\| \leq 1$. However, if $x=$ $(1,0, \ldots, 0, \ldots)$, then $\|x\|_{\ell^{p}}=1=\|x\|_{\ell q}$, which proves that $\|i\|=1$.
8. (10 points) Let $a:=\left(a_{n}\right)_{n \geq 1} \in \ell^{\infty}$ and consider the operator $M_{a}: \ell^{\infty} \rightarrow \ell^{\infty}$ given by

$$
\left(M_{a} x\right)_{n}:=a_{n} x_{n} \quad \forall n \geq 1 .
$$

Show that $M_{a} \in \mathcal{B}\left(\ell^{\infty} ; \ell^{\infty}\right)$ and $\left\|M_{a}\right\|=\|a\|_{\ell \infty}$.
Solution. Linearity is simple to show: for any two sequences $x, y \in \ell^{\infty}$ and $\alpha, \beta \in \mathbb{K}$,

$$
\left(M_{a}(\alpha x+\beta y)\right)_{n}=a_{n}\left(\alpha x_{n}+\beta y_{n}\right)=\alpha a_{n} x_{n}+\beta a_{n} y_{n}=\alpha\left(M_{a} x\right)_{n}+\beta\left(M_{a} y\right)_{n}
$$

Also

$$
\left|a_{n} x_{n}\right| \leq\|a\|_{\ell \infty}\|x\|_{\ell \infty} \quad \forall n
$$

and taking the supremum in the left-hand-side, it follows that $\left\|M_{a} x\right\|_{\ell_{\infty}} \leq\|a\|_{\ell^{\infty}}\|x\|_{\ell^{\infty}}$. This proves boundedness of M_{a} and $\left\|M_{a}\right\| \leq\|a\|_{\ell \infty}$. Finally, take $x=(1,1, \ldots)$ and note that $M_{a} x=a$, while $\|x\|_{\ell \infty}=1$. Therefore

$$
\left\|M_{a}\right\| \geq\left\|M_{a} x\right\|_{\ell \infty}=\|a\|_{\ell \infty} .
$$

9. (10 points) Let $K \in L^{\infty}(\Omega \times \Omega)$, where Ω is an open bounded subset of \mathbb{R}^{d}. Show that the operator

$$
(P f)(x):=\int_{\Omega} K(x, y) f(y) \mathrm{d} y
$$

is bounded from $L^{1}(\Omega)$ to $L^{p}(\Omega)$ for all $p \in[1, \infty]$.
Solution. For almost every x and $y,|K(x, y)| \leq M$, and therefore for almost every x :

$$
|(P f)(x)| \leq \int_{\Omega}|K(x, y)||f(y)| \mathrm{d} y \leq M \int_{\Omega}|f(y)| \mathrm{d} y=M\|f\|_{L^{1}(\Omega)}
$$

If $p<\infty$, then

$$
\int_{\Omega}|(P f)(x)|^{p} \mathrm{~d} x \leq M^{p}\|f\|_{L^{1}(\Omega)}^{p}|\Omega|
$$

where $|\Omega|$ is the measure of Ω. Therefore

$$
\|P f\|_{L^{p}(\Omega)} \leq M|\Omega|^{1 / p}\|f\|_{L^{1}(\Omega)} \quad \forall f \in L^{1}(\Omega)
$$

This proves that P is bounded from $L^{1}(\Omega)$ to $L^{p}(\Omega)$ and $\|P\| \leq M|\Omega|^{1 / p}$. (We can put $M=\|K\|_{L^{\infty}(\Omega \times \Omega)}$.) If $p=\infty$, the first inequality we have proved shows that

$$
\|P f\|_{L^{\infty}(\Omega)} \leq M\|f\|_{L^{1}(\Omega)} \quad \forall f \in L^{1}(\Omega)
$$

This proves that P is bounded from $L^{1}(\Omega)$ to $L^{\infty}(\Omega)$ and $\|P\| \leq M$.
10. (10 points) Let X be a normed space, $0 \neq x_{0} \in X$, and $c \in \mathbb{R}^{n}$. Show that there exists $\Lambda: X \rightarrow \mathbb{R}^{n}$ linear and bounded satisfying $\Lambda x_{0}=c$.

Solution. Using the separation theorem (or any version of the extension theorems), we can find $\phi \in X^{*}$ such that $\phi\left(x_{0}\right) \neq 0$. Therefore

$$
\Lambda x:=\frac{\phi(x)}{\phi\left(x_{0}\right)} c
$$

satisfies the requirements. It is clearly linear and bounded, since

$$
\frac{1}{\phi\left(x_{0}\right)} \phi \in X^{*}
$$

and the map $\mathbb{R} \rightarrow \mathbb{R}^{n}$ given by $t \mapsto t c$ is linear (and bounded). Finally $\Lambda x_{0}=c$.

MATH 806: Functional analysis

1. (5 points) Let X and Y be Banach spaces and let $\left(\Lambda_{n}\right)_{n \geq 1}$ be a sequence in $\mathcal{B}(X ; Y)$. Show that if there exists x such that $\left\|\Lambda_{n} x\right\| \rightarrow \infty$, then $\sup _{n}\left\|\Lambda_{n}\right\|=\infty$.

Solution. If $\left\|\Lambda_{n}\right\| \leq C$ for all n, then $\left\|\Lambda_{n} x\right\| \leq C\|x\|$ for all x and, therefore, $\left\|\Lambda_{n} x\right\|$ cannot diverge.
2. (5 points) Let X and Y be Banach spaces. Show that if $\Lambda \in \mathcal{B}(X ; Y)$, then

$$
x_{n} \rightharpoonup x \quad \Longrightarrow \quad \Lambda x_{n} \rightharpoonup \Lambda x .
$$

Solution. Given $\phi \in Y^{*}$, the map $\phi \Lambda: X \rightarrow \mathbb{K}$ is linear and bounded, that is, $\phi \Lambda \in X^{*}$. Therefore

$$
\phi\left(\Lambda x_{n}\right)=(\phi \Lambda)\left(x_{n}\right) \rightarrow(\phi \Lambda)(x)=\phi(\Lambda x) \quad \forall \phi \in Y^{*},
$$

which means that $\Lambda x_{n} \rightharpoonup \Lambda x$.
3. (5 points) Let X and Y be normed spaces. Let $\Lambda: X \rightarrow Y$ be linear. Assume that we have defined boundedness as follows: Λ is bounded when the image of $B(0 ; 1):=\{x \in X$: $\|x\|<1\}$ is bounded in Y. Show that Λ is bounded if and only if the image by Λ of any bounded set of X is bounded in Y.

Solution. One implication is straightforward, since $B(0 ; 1)$ is bounded. Let $U \subset X$ be bounded. Then $U \subset B(0 ; R)$ for $R>0$ large enough. Since

$$
\|\Lambda x\| \leq C \quad \forall x \in B(0 ; 1)
$$

then

$$
\left\|\Lambda\left(\frac{1}{R} z\right)\right\| \leq C \quad \forall z \in B(0 ; R)
$$

and, by linearity

$$
\|\Lambda z\| \leq R C \quad \forall z \in B(0 ; R) .
$$

This implies that $\Lambda(U) \subset B_{Y}(0 ; C R)$.
4. The set of invertible operators is open. (4×5 points) Let X and Y be Banach spaces.
(a) The Neumann series. Show that if $\Lambda \in \mathcal{B}(X ; X)$ satisfies $\|\Lambda\|<1$, then the series

$$
\sum_{n=0}^{\infty} \Lambda^{n}
$$

converges. (Here $\Lambda^{0}=I$ is the identity operator.) Give an upper bound for the norm of the sum of the series.

Solution. Note that $\left\|\Lambda^{n}\right\| \leq\|\lambda\|^{n}$. (This can be easily proved by induction.) Therefore, for $N>M$,

$$
\left\|\sum_{n=M+1}^{N} \Lambda^{n}\right\| \leq \sum_{n=M+1}^{N}\|\Lambda\|^{n} .
$$

Since the following geometric series converges

$$
\sum_{n=0}^{\infty}\|\Lambda\|^{n}=\frac{1}{1-\|\Lambda\|}
$$

given the fact that $\|\Lambda\|<1$, then the estimate above shows that the sequence of partial sums $S_{N}:=\sum_{n=0}^{N} \Lambda^{n}$ is Cauchy in $\mathcal{B}(X ; X)$. However, $\mathcal{B}(X ; X)$ is Banach (since X is Banach) and this implies convergence of the series

$$
S_{N} \rightarrow S:=\sum_{n=0}^{\infty} \Lambda^{n}
$$

With the same arguments we can prove that

$$
\left\|S_{N}\right\|=\left\|\sum_{n=0}^{N} \Lambda^{n}\right\| \leq \sum_{n=0}^{N}\|\Lambda\|^{n} \leq \sum_{n=0}^{\infty}\|\Lambda\|^{n}=\frac{1}{1-\|\Lambda\|} \quad \forall N,
$$

and, since $S_{N} \rightarrow S$, then $\left\|S_{N}\right\| \rightarrow\|S\| \leq 1 /(1-\|\Lambda\|)$.
(b) Show that

$$
(I-\Lambda)^{-1}=\sum_{n=0}^{\infty} \Lambda^{n}
$$

Solution. Let S_{N} be as in (a). Then

$$
(I-\Lambda) S_{N}=I-\Lambda^{N+1}
$$

Since $\left\|(I-\Lambda)\left(S_{N}-S\right)\right\| \leq\|I-\Lambda\|\left\|S_{N}-S\right\|$, it follows from the above that

$$
(I-\Lambda) S_{N} \rightarrow(I-\Lambda) S \quad(I-\Lambda) S_{N}=I-\Lambda^{N+1} \rightarrow I
$$

(note that $\left\|\Lambda^{N+1}\right\| \leq\|\Lambda\|^{N+1}$), which proves that $(I-\Lambda) S=I$. A similar argument shows that $S(I-\Lambda)=I$.
(c) Let $A \in \mathcal{B}(X ; Y)$ be invertible. Show that if $B \in \mathcal{B}(X ; Y)$ satisfies

$$
\|B\|<\frac{1}{\left\|A^{-1}\right\|}
$$

then $A-B$ is invertible. (Hint. $A-B=A\left(I-A^{-1} B\right)$.)
Solution. By (b), using that $\left\|A^{-1} B\right\| \leq\left\|A^{-1}\right\|\|B\|<1$, it follows that $I-A^{-1} B$ is invertible. Since A is invertible, $A\left(I-A^{-1} B\right)=A-B$ is also invertible.
(d) Use (c) to show that the set

$$
\{\Lambda \in \mathcal{B}(X ; Y): \Lambda \text { is invertible }\}
$$

is open in $\mathcal{B}(X ; Y)$.

Solution. If A is invertible, by (c), so is $A-B$ for every B such that $\|B\|<1 /\left\|A^{-1}\right\|$. Therefore the ball $B\left(A ; \frac{1}{\left\|A^{-1}\right\|}\right)$ is contained in the set of invertible operators. This proves that the set of invertible operators is open.
5. Extension of a densely defined operator. (5×5 points) Let X and Y be Banach spaces and let $\Lambda: D(\Lambda) \rightarrow Y$ be a linear operator defined on a subspace $D(\Lambda) \subset X$ satisfying:

$$
\overline{D(\Lambda)}=X \quad\|\Lambda x\|_{Y} \leq C\|x\|_{X} \quad \forall x \in D(\Lambda)
$$

(a) Given $x \in X$ and a sequence $\left(x_{n}\right)_{n \geq 1}$ in $D(\Lambda)$ such that $x=\lim _{n} x_{n}$, show that the limit

$$
\lim _{n} \Lambda x_{n}
$$

exists.
Solution. From the inequality

$$
\left\|\Lambda\left(x_{n}-x_{m}\right)\right\|_{Y} \leq C\left\|x_{n}-x_{m}\right\|_{X}
$$

it is clear that the sequence $\left(\Lambda x_{n}\right)_{n \geq 1}$ is Cauchy, and therefore convergent, in Y.
(b) Show that if $\lim _{n} x_{n}=x=\lim _{n} x_{n}^{\prime}$, where $\left(x_{n}\right)_{n \geq 1}$ and $\left(x_{n}^{\prime}\right)_{n \geq 1}$ are sequences in $D(\Lambda)$, then

$$
\lim _{n} \Lambda x_{n}=\lim _{n} \Lambda x_{n}^{\prime} .
$$

(Hint. Consider the sequence $\left(x_{1}, x_{2}^{\prime}, x_{3}, x_{4}^{\prime}, \ldots.\right)$.)
Solution. For all $\varepsilon>0$, there exists N such that

$$
\left\|x-x_{n}\right\|<\varepsilon \quad\left\|x-x_{n}^{\prime}\right\|<\varepsilon \quad \forall n \geq N
$$

Ths proves that the combined sequence

$$
\widetilde{x}_{n}:= \begin{cases}x_{n} & \text { if } n \text { is odd } \\ x_{n}^{\prime} & \text { if } n \text { is even }\end{cases}
$$

is convergent to x. Therefore $\lim \Lambda \widetilde{x}_{n}$ exists. However, this sequence contains the subsequences $\left(\Lambda x_{2 n-1}\right)_{n \geq 1}$ and $\left(\Lambda x_{2 n}^{\prime}\right)_{n \geq 1}$, so both converge to the same limit. Since these subsequences are also respective subsequences of the convergent sequences $\left(\Lambda x_{n}\right)_{n \geq 1}$ and $\left(\Lambda x_{n}^{\prime}\right)_{n \geq 1}$, the limits of the latter have to coincide.

We then define $A x:=\lim _{n} \Lambda x_{n}$.
(c) Show that $A x=\Lambda x$ for $x \in D(\Lambda)$.

Solution. If $x \in D(\Lambda)$, we can take the sequence with elements $x_{n}:=x$ for all n. Therefore $A x=\lim \Lambda x_{n}=\lim \Lambda x=\Lambda x$.
(d) Show that

$$
\|A x\|_{Y} \leq C\|x\|_{X} \quad \forall x \in X
$$

Solution. If $\left(x_{n}\right)_{n \geq 1}$ is a sequence of elements of $D(\Lambda)$ converging to $x \in X$, then $\left\|x_{n}\right\|_{X} \rightarrow\|x\|_{X}$ and $\left\|\Lambda x_{n}\right\|_{Y} \rightarrow\|A x\|_{Y}$. Taking the limit in the inequality

$$
\left\|A x_{n}\right\|_{Y} \leq C\left\|x_{n}\right\|_{X} \quad \forall n
$$

the result follows.
(e) Show that if $B \in \mathcal{B}(X ; Y)$ satisfies

$$
B x=\Lambda x \quad \forall x \in D(\Lambda)
$$

then $B=A$.
Solution. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in $D(\Lambda)$ converging to x. Then, since A and B are linear and bounded $A x=\lim A x_{n}$ and $B x=\lim B x_{n}$. However, since $x_{n} \in D(\Lambda)$ and A and B extend Λ, then $A x_{n}=\Lambda x_{n}=B x_{n}$ and the result is proved.
6. The space $\mathcal{C}^{\infty}(\mathbb{R})$. (20 points) Consider the space $X:=\mathcal{C}^{\infty}(\mathbb{R})$ of infinitely differentiable functions of a real variable. Define a metric in X with the following property: $f_{n} \rightarrow f$ if and only if

$$
f_{n}^{(j)} \rightarrow f^{(j)} \quad \text { uniformly on compact sets of } \mathbb{R}, \quad \text { for all } j \geq 0
$$

(Prove that the metric you define has actually that property.) Show that X is a Fréchet space when endowed with such a metric. (Note that there are many metrics providing the same concept of convergence in X.)

Solution. [Sketch only]
(a) Construction. Take $I_{k}:=[-k, k]$ and the seminorms

$$
|f|_{k}:=\max _{\ell \leq k} \max _{x \in I_{k}}\left|f^{(\ell}(x)\right|=\max _{\ell \leq k}\left\|f^{(\ell)}\right\|_{L^{\infty}\left(I_{k}\right)} .
$$

This is a separating sequence of seminorms: to show it, note that if $|f|_{k}=0$, then $f \equiv 0$ in I_{k} and $\cup_{k} I_{k}=\mathbb{R}$. We then build the metric

$$
d(f, g):=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{|f-g|_{k}}{1+|f-g|_{k}}
$$

This construction is abstract and always leads to a metric space where convergence of sequence is equivalent to

$$
\lim _{n}\left|f_{n}-f\right|_{k}=0 \quad \forall k
$$

(b) Characterization of convergence. It is clear that uniform convergence on compact sets of $\left(f_{n}^{(\ell)}\right)_{n \geq 1}$ for all ℓ implies that for given $k,\left|f_{n}-f\right|_{k} \rightarrow 0$. (This follows from the fact that only $k+1$ derivatives are involved here and we have restricted our attention to the interval I_{k}. Let now M be a compact set in \mathbb{R} and let ℓ be a fixed integer. We then take k such that $\ell \leq k$ and $M \subset[-k, k]=I_{k}$. Since $\left|f_{n}-f\right|_{k} \rightarrow 0$, then $f_{n}^{(\ell)} \rightarrow f^{(\ell)}$ uniformly in I_{k} and, therefore, in M.
(c) 'Fréchetness.' Let $\left(f_{n}\right)_{n \geq 1}$ be Cauchy in X. The general argument that works for all constructions of metric spaces from sequences of seminorms shows that this implies that for all $\varepsilon>0$ and $k \geq 0$, there exists N such that

$$
\left|f_{n}-f_{m}\right|_{k}<\varepsilon \quad \forall n, m \geq N
$$

In a first instance, we only focus in the function without derivatives.

$$
\left\|f_{n}-f_{m}\right\|_{L^{\infty}\left(I_{k}\right)} \leq\left|f_{n}-f_{m}\right|_{k}<\varepsilon \quad \forall n, m \geq N
$$

This proves that f_{n} converges uniformly to a continuous function in I_{k}. If we look at the interval I_{k+1}, we prove that $\left.f_{n}\right|_{I_{k+1}}$ converges uniformly to a continuous function in I_{k+1}. By induction, we have $f_{n} \rightarrow f$ uniformly in I_{k} for all k, where the limit does not depend on k. We can now repeat the same argument with all the derivatives.
7. Diagonal operators in separable Hilbert spaces. (4×5 points) Let H be a complex separable Hilbert space and let $\left(\phi_{n}\right)_{n \geq 1}$ be a Hilbert basis of H. Consider a sequence $\lambda:=\left(\lambda_{n}\right)_{n \geq 1} \in \ell^{\infty}$ and the operator defined with the series

$$
\Lambda x:=\sum_{n=1}^{\infty} \lambda_{n}\left(x, \phi_{n}\right) \phi_{n}
$$

(a) Show that Λ is bounded and

$$
\|\Lambda\| \leq\|\lambda\|_{\ell \infty}
$$

Solution. We can easily estimate (the sum is orthogonal) for all $M>N$ and $x \in X$:

$$
\left\|\sum_{n=N+1}^{M} \lambda_{n}\left(x, \phi_{n}\right) \phi_{n}\right\|^{2}=\sum_{n=N+1}^{M}\left|\lambda_{n}\right|^{2}\left|\left(x, \phi_{n}\right)\right|^{2} \leq\|\lambda\|_{\ell \infty}^{2} \sum_{n=N+1}^{M}\left|\lambda_{n}\right|^{2}\left|\left(x, \phi_{n}\right)\right|^{2} .
$$

Since, by Parseval's identity,

$$
\sum_{n=1}^{N}\left|\left(x, \phi_{n}\right)\right|^{2}=\|x\|^{2}
$$

it follows that the partial sums $\Lambda_{N} x:=\sum_{n=1}^{N} \lambda_{n}\left(x, \phi_{n}\right) \phi_{n}$ are Cauchy and, therefore, convergent. We can then bound

$$
\left\|\Lambda_{N} x\right\|^{2}=\left\|\sum_{n=1}^{N} \lambda_{n}\left(x, \phi_{n}\right) \phi_{n}\right\|^{2}=\sum_{n=1}^{N}\left|\lambda_{n}\right|^{2}\left|\left(x, \phi_{n}\right)\right|^{2} \leq\|\lambda\|_{\ell \infty}^{2}\|x\|^{2} \quad \forall x, \quad \forall N
$$

and take the limit as $N \rightarrow \infty$, showing that $\|\Lambda x\| \leq\|\lambda\|_{\ell \infty}\|x\|$ for all x. Since Λ is linear (this is very easy to check), then Λ is bounded and $\|\Lambda\| \leq\|\lambda\|_{\ell \infty}$.
(b) Show that Λ is injective if and only if $\lambda_{n} \neq 0$ for all n. (Hint. Compute $\|\Lambda x\|$ and study the kernel of Λ.)

Solution. If $\lambda_{n}=0$, then $\Lambda \phi_{n}=\lambda_{n} \phi_{n}=0$ and Λ is not injective. Assume now that $\lambda_{n} \neq 0$ for all n. If $\Lambda x=0$, then

$$
\sum_{n=0}^{\infty}\left|\lambda_{n}\right|^{2}\left|\left(x, \phi_{n}\right)\right|^{2}=0
$$

which implies that $\left(x, \phi_{n}\right)=0$ for all n. Since $\left(\phi_{n}\right)_{n \geq 1}$ is a Hilbert basis, it follows that $x=0$ and Λ is injective.
(c) Show that Λ is invertible if and only if there exists $C>0$ such that $\left|\lambda_{n}\right| \geq C$. (Hint. For one implication, construct the inverse. For the other one, use the Banach Isomorphism Theorem.)

Solution. If Λ is invertible, by the Banach Isomorphism Theorem, Λ^{-1} is bounded. Therefore

$$
\left\|\Lambda^{-1} x\right\| \leq D\|x\| \quad \forall x \in H
$$

Taking $x=\phi_{n}$ and recalling that $\Lambda \phi_{n}=\lambda_{n} \phi_{n}$, it follows that

$$
\frac{1}{\left|\lambda_{n}\right|} \leq D \quad \forall n
$$

so the result follows with $C=1 / D$. Assume now that $\left|\lambda_{n}\right| \geq C>0$ for all n. Then, the sequence $\mu_{n}:=1 / \lambda_{n}$ is in ℓ^{∞} and the operator

$$
\mathrm{M} x:=\sum_{n=1}^{\infty} \mu_{n}\left(x, \phi_{n}\right) \phi_{n}
$$

is well defined and bounded. Note that

$$
\left(\Lambda x, \phi_{n}\right)=\lambda_{n}\left(x, \phi_{n}\right) \quad\left(\mathrm{M} x, \phi_{n}\right)=\frac{1}{\lambda_{n}}\left(x, \phi_{n}\right) \quad \forall n, \quad \forall x .
$$

This and the fact that $x=\sum_{n}\left(x, \phi_{n}\right) \phi_{n}$ prove that $\mathrm{M} \Lambda x=\Lambda \mathrm{M} x=x$, for all x.
(d) Consider the sequence of operators defined with the partial sums

$$
\Lambda_{N} x:=\sum_{n=1}^{N} \lambda_{n}\left(x, \phi_{n}\right) \phi_{n}, \quad N \geq 1 .
$$

Show that if $\lambda_{n} \rightarrow 0$, then

$$
\left\|\Lambda_{N}-\Lambda\right\| \rightarrow 0
$$

Solution. Applying the first result of this series (question (a)) to the sequence $\left(0, \ldots, 0, \lambda_{N+1}, \lambda_{N+2}, \ldots\right)$, it follows that

$$
\left\|\Lambda_{N}-\Lambda\right\| \leq \sup _{n \geq N+1}\left|\lambda_{n}\right| .
$$

However, if $\lambda_{n} \rightarrow 0$, the right-hand side of the above converges to zero.

