Fall 2015

October 19

- 1. (10 points) Let $(\phi_n)_{n\geq 1}$ be an orthonormal sequence in an infinite dimensional Hilbert space.
 - (a) State Bessel's inequality.

Solution. If H is a Hilbert space and $(\phi_n)_{n\geq 1}$ is an orthonormal sequence, then

$$\sum_{n=1}^{\infty} |(x,\phi_n)|^2 \le ||x||^2 \qquad \forall x \in H,$$

(where (\cdot, \cdot) and $\|\cdot\|$ are the inner product in H and the associated norm).

(b) Define what we mean when we say that $(\phi_n)_{n\geq 1}$ is a complete orthonormal sequence.

Solution. One possible definition: the set cannot be extended to a larger orthonormal set. Also

$$(x,\phi_n) = 0 \quad \forall n \ge \implies x = 0.$$

(c) What happens to Bessel's inequality when $(\phi_n)_{n\geq 1}$ is a complete orthonormal sequence?

Solution. It becomes an equality for every x. (That is another equivalent definition of complete orthonormal set.)

2. (10 points) Prove that in an inner product space H

$$||x|| = \sup_{0 \neq y \in H} \frac{|(x,y)|}{||y||} \qquad \forall x \in H.$$

Solution. The result needs to be proved for $x \neq 0$, since it is straightforward for x = 0. Then

$$||x|| = \frac{|(x,x)|}{||x||} \le \sup_{0 \neq y \in H} \frac{|(x,y)|}{||y||} \le \sup_{0 \neq y \in H} \frac{||x|| ||y||}{||y||} = ||x||,$$

by the Cauchy-Schwarz inequality.

3. (10 points) Let $(x_n)_{n\geq 1}$ be a sequence in a normed space X. Prove that if $x_n \to x$, then $x_n \rightharpoonup x$.

Solution. If $x_n \to x$ and $\phi : X \to \mathbb{K}$ is continuous, then $\phi(x_n) \to \phi(x)$. Since this is true for all $\phi \in X^*$, it follows (by definition) that $x_n \rightharpoonup x$.

4. (10 points) Let X be a Banach space and let the sequence $(x_n)_{n\geq 1}$ satisfy $x_n \rightharpoonup x$ and $x_n \rightharpoonup y$. Show that x = y.

Solution. If $x_n \rightharpoonup x$ and $x_n \rightharpoonup y$, then

 $\phi(x_n) \to \phi(x)$ and $\phi(x_n) \to \phi(y)$ $\forall \phi \in X^*$.

Since the limit is unique in \mathbb{K} , it follows that $\phi(y) = \phi(y)$ for all $\phi \in X^*$. By the separation theorem, if $x \neq y$, then there exists $\phi \in X^*$ such that $\phi(x) \neq \phi(y)$. Therefore x = y and the proof is finished.

5. (10 points) State Minkowski's inequality for sequences.

Solution. For every couple of sequences of complex numbers

$$\left(\sum_{n=1}^{\infty} |a_n + b_n|^p\right)^{1/2} \le \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/2} + \left(\sum_{n=1}^{\infty} |b_n|^p\right)^{1/2}.$$

6. (10 points) Consider the space of finite sequences

$$f := \{ (x_n)_{n \ge 1} : x_n \in \mathbb{C}, \quad x_n = 0 \quad \forall n \ge N, \text{ for some } N \}.$$

Show that f is dense in ℓ^p for all $p \in [1, \infty)$ but f is not dense in ℓ^{∞} .

Solution. If $x = (x_n)_{n \ge 1} \in \ell^p$, with $1 \le p < \infty$, then

$$\lim_{N}\sum_{n=N+1}^{\infty}|x_{n}|^{p}=0.$$

Let now $y_N := (x_1, ..., x_N, 0, 0, ...) \in f$. Then

$$||y_N - x||_{\ell^p}^p = \sum_{n=N+1}^{\infty} |x_n|^p \to 0,$$

which proves that we can find a sequence of elements of f converging to x for every $x \in \ell^p$. Therefore f is dense in ℓ^p . When $p = \infty$, we can take $x = (1, 1, \ldots, 1, \ldots)$. If $y \in f$, then $y_n = 0$ for all n > N for some N and

$$||y - x||_{\ell^{\infty}} = \sup_{n} |y_n - x_n| \ge \sum_{n \ge N+1} |x_n| = 1.$$

This proves that x cannot be approximated by any finite sequence.

7. (10 points) Starting on the inequality (do not prove it), valid for $q \ge p \ge 1$,

$$\left(\sum_{n=1}^{N} |x_n|^q\right)^{1/q} \le \left(\sum_{n=1}^{N} |x_n|^p\right)^{1/p} \qquad \forall x_1, \dots, x_N \in \mathbb{C}, \qquad \forall N,$$

show that the inclusion operator $i : \ell^p \to \ell^q$, given by ix := x, is bounded. What is the norm of this operator?

Solution. If $x = (x_n)_{n \ge 1} \in \ell^p$, then

$$\left(\sum_{n=1}^{N} |x_n|^q\right)^{1/q} \le \left(\sum_{n=1}^{N} |x_n|^p\right)^{1/p} \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \qquad \forall N,$$

and therefore $||x||_{\ell^q} \leq ||x||_{\ell^p}$. In particular, this proves that the operator i is well defined, it is bounded (it is clearly linear) and satisfies $||i|| \leq 1$. However, if $x = (1, 0, \ldots, 0, \ldots)$, then $||x||_{\ell^p} = 1 = ||x||_{\ell^q}$, which proves that ||i|| = 1.

8. (10 points) Let $a := (a_n)_{n \ge 1} \in \ell^{\infty}$ and consider the operator $M_a : \ell^{\infty} \to \ell^{\infty}$ given by

$$(M_a x)_n := a_n x_n \quad \forall n \ge 1.$$

Show that $M_a \in \mathcal{B}(\ell^{\infty}; \ell^{\infty})$ and $||M_a|| = ||a||_{\ell^{\infty}}$.

Solution. Linearity is simple to show: for any two sequences $x,y\in\ell^\infty$ and $\alpha,\beta\in\mathbb{K},$

$$(M_a(\alpha x + \beta y))_n = a_n(\alpha x_n + \beta y_n) = \alpha a_n x_n + \beta a_n y_n = \alpha (M_a x)_n + \beta (M_a y)_n$$

Also

$$a_n x_n | \le ||a||_{\ell^{\infty}} ||x||_{\ell^{\infty}} \qquad \forall n$$

and taking the supremum in the left-hand-side, it follows that $||M_a x||_{\ell^{\infty}} \leq ||a||_{\ell^{\infty}} ||x||_{\ell^{\infty}}$. This proves boundedness of M_a and $||M_a|| \leq ||a||_{\ell^{\infty}}$. Finally, take x = (1, 1, ...)and note that $M_a x = a$, while $||x||_{\ell^{\infty}} = 1$. Therefore

$$||M_a|| \ge ||M_a x||_{\ell^{\infty}} = ||a||_{\ell^{\infty}}.$$

9. (10 points) Let $K \in L^{\infty}(\Omega \times \Omega)$, where Ω is an open bounded subset of \mathbb{R}^d . Show that the operator

$$(Pf)(x) := \int_{\Omega} K(x, y) f(y) \,\mathrm{d}y$$

is bounded from $L^1(\Omega)$ to $L^p(\Omega)$ for all $p \in [1, \infty]$.

Solution. For almost every x and y, $|K(x,y)| \le M$, and therefore for almost every x:

$$|(Pf)(x)| \le \int_{\Omega} |K(x,y)| \, |f(y)| \mathrm{d}y \le M \int_{\Omega} |f(y)| \mathrm{d}y = M ||f||_{L^{1}(\Omega)}.$$

If $p < \infty$, then

$$\int_{\Omega} |(Pf)(x)|^p \mathrm{d}x \le M^p ||f||_{L^1(\Omega)}^p |\Omega|,$$

where $|\Omega|$ is the measure of Ω . Therefore

$$\|Pf\|_{L^p(\Omega)} \le M |\Omega|^{1/p} \|f\|_{L^1(\Omega)} \qquad \forall f \in L^1(\Omega).$$

This proves that P is bounded from $L^1(\Omega)$ to $L^p(\Omega)$ and $||P|| \le M |\Omega|^{1/p}$. (We can put $M = ||K||_{L^{\infty}(\Omega \times \Omega)}$.) If $p = \infty$, the first inequality we have proved shows that

$$\|Pf\|_{L^{\infty}(\Omega)} \le M \|f\|_{L^{1}(\Omega)} \qquad \forall f \in L^{1}(\Omega).$$

This proves that P is bounded from $L^1(\Omega)$ to $L^{\infty}(\Omega)$ and $||P|| \leq M$.

10. (10 points) Let X be a normed space, $0 \neq x_0 \in X$, and $c \in \mathbb{R}^n$. Show that there exists $\Lambda : X \to \mathbb{R}^n$ linear and bounded satisfying $\Lambda x_0 = c$.

Solution. Using the separation theorem (or any version of the extension theorems), we can find $\phi \in X^*$ such that $\phi(x_0) \neq 0$. Therefore

$$\Lambda x := \frac{\phi(x)}{\phi(x_0)}c$$

satisfies the requirements. It is clearly linear and bounded, since

$$\frac{1}{\phi(x_0)}\phi \in X^*$$

and the map $\mathbb{R} \to \mathbb{R}^n$ given by $t \mapsto t c$ is linear (and bounded). Finally $\Lambda x_0 = c$.

Fall	2015
T OUL	2010

Midterm exam (take home part)

1. (5 points) Let X and Y be Banach spaces and let $(\Lambda_n)_{n\geq 1}$ be a sequence in $\mathcal{B}(X;Y)$. Show that if there exists x such that $\|\Lambda_n x\| \to \infty$, then $\sup_n \|\Lambda_n\| = \infty$.

Solution. If $||\Lambda_n|| \leq C$ for all n, then $||\Lambda_n x|| \leq C ||x||$ for all x and, therefore, $||\Lambda_n x||$ cannot diverge.

2. (5 points) Let X and Y be Banach spaces. Show that if $\Lambda \in \mathcal{B}(X;Y)$, then

 $x_n \rightharpoonup x \implies \Lambda x_n \rightharpoonup \Lambda x.$

Solution. Given $\phi \in Y^*$, the map $\phi \Lambda : X \to \mathbb{K}$ is linear and bounded, that is, $\phi \Lambda \in X^*$. Therefore

$$\phi(\Lambda x_n) = (\phi\Lambda)(x_n) \to (\phi\Lambda)(x) = \phi(\Lambda x) \qquad \forall \phi \in Y^*,$$

which means that $\Lambda x_n \rightharpoonup \Lambda x$.

3. (5 points) Let X and Y be normed spaces. Let $\Lambda : X \to Y$ be linear. Assume that we have defined boundedness as follows: Λ is bounded when the image of $B(0;1) := \{x \in X : \|x\| < 1\}$ is bounded in Y. Show that Λ is bounded if and only if the image by Λ of any bounded set of X is bounded in Y.

Solution. One implication is straightforward, since B(0;1) is bounded. Let $U \subset X$ be bounded. Then $U \subset B(0;R)$ for R > 0 large enough. Since

$$\|\Lambda x\| \le C \qquad \forall x \in B(0;1),$$

then

 $\|\Lambda(\frac{1}{R}z)\| \le C \qquad \forall z \in B(0;R)$

and, by linearity

 $\|\Lambda z\| \le RC \qquad \forall z \in B(0; R).$

This implies that $\Lambda(U) \subset B_Y(0; CR)$.

- 4. The set of invertible operators is open. $(4 \times 5 \text{ points})$ Let X and Y be Banach spaces.
 - (a) The Neumann series. Show that if $\Lambda \in \mathcal{B}(X; X)$ satisfies $\|\Lambda\| < 1$, then the series

$$\sum_{n=0}^{\infty} \Lambda^n$$

converges. (Here $\Lambda^0 = I$ is the identity operator.) Give an upper bound for the norm of the sum of the series.

Solution. Note that $\|\Lambda^n\| \leq \|\lambda\|^n$. (This can be easily proved by induction.) Therefore, for N > M,

$$\left\|\sum_{n=M+1}^{N} \Lambda^{n}\right\| \leq \sum_{n=M+1}^{N} \|\Lambda\|^{n}.$$

Since the following geometric series converges

$$\sum_{n=0}^{\infty} \|\Lambda\|^n = \frac{1}{1 - \|\Lambda\|},$$

given the fact that $\|\Lambda\| < 1$, then the estimate above shows that the sequence of partial sums $S_N := \sum_{n=0}^N \Lambda^n$ is Cauchy in $\mathcal{B}(X;X)$. However, $\mathcal{B}(X;X)$ is Banach (since X is Banach) and this implies convergence of the series

$$S_N \to S := \sum_{n=0}^{\infty} \Lambda^n.$$

With the same arguments we can prove that

$$||S_N|| = \left\|\sum_{n=0}^N \Lambda^n\right\| \le \sum_{n=0}^N ||\Lambda||^n \le \sum_{n=0}^\infty ||\Lambda||^n = \frac{1}{1 - ||\Lambda||} \quad \forall N,$$

and, since $S_N \to S,$ then $\|S_N\| \to \|S\| \leq 1/(1-\|\Lambda\|).$

(b) Show that

$$(I - \Lambda)^{-1} = \sum_{n=0}^{\infty} \Lambda^n.$$

Solution. Let S_N be as in (a). Then

$$(I - \Lambda)S_N = I - \Lambda^{N+1}.$$

Since $\|(I - \Lambda)(S_N - S)\| \le \|I - \Lambda\| \|S_N - S\|$, it follows from the above that

$$(I - \Lambda)S_N \to (I - \Lambda)S$$
 $(I - \Lambda)S_N = I - \Lambda^{N+1} \to I$

(note that $\|\Lambda^{N+1}\| \leq \|\Lambda\|^{N+1}$), which proves that $(I - \Lambda)S = I$. A similar argument shows that $S(I - \Lambda) = I$.

(c) Let $A \in \mathcal{B}(X;Y)$ be invertible. Show that if $B \in \mathcal{B}(X;Y)$ satisfies

$$\|B\| < \frac{1}{\|A^{-1}\|},$$

then A - B is invertible. (Hint. $A - B = A(I - A^{-1}B)$.)

Solution. By (b), using that $||A^{-1}B|| \leq ||A^{-1}|| ||B|| < 1$, it follows that $I - A^{-1}B$ is invertible. Since A is invertible, $A(I - A^{-1}B) = A - B$ is also invertible.

(d) Use (c) to show that the set

$$\{\Lambda \in \mathcal{B}(X;Y) : \Lambda \text{ is invertible}\}\$$

is open in $\mathcal{B}(X;Y)$.

Solution. If A is invertible, by (c), so is A - B for every B such that $||B|| < 1/||A^{-1}||$. Therefore the ball $B(A; \frac{1}{||A^{-1}||})$ is contained in the set of invertible operators. This proves that the set of invertible operators is open.

5. Extension of a densely defined operator. $(5 \times 5 \text{ points})$ Let X and Y be Banach spaces and let $\Lambda : D(\Lambda) \to Y$ be a linear operator defined on a subspace $D(\Lambda) \subset X$ satisfying:

$$\overline{D(\Lambda)} = X \qquad \|\Lambda x\|_Y \le C \|x\|_X \qquad \forall x \in D(\Lambda).$$

(a) Given $x \in X$ and a sequence $(x_n)_{n \ge 1}$ in $D(\Lambda)$ such that $x = \lim_{n \to \infty} x_n$, show that the limit

$$\lim_n \Lambda x_n$$

exists.

Solution. From the inequality

$$\|\Lambda(x_n - x_m)\|_Y \le C \|x_n - x_m\|_X,$$

it is clear that the sequence $(\Lambda x_n)_{n\geq 1}$ is Cauchy, and therefore convergent, in Y.

(b) Show that if $\lim_n x_n = x = \lim_n x'_n$, where $(x_n)_{n \ge 1}$ and $(x'_n)_{n \ge 1}$ are sequences in $D(\Lambda)$, then

$$\lim_{n} \Lambda x_n = \lim_{n} \Lambda x'_n.$$

(Hint. Consider the sequence $(x_1, x'_2, x_3, x'_4, \dots)$.)

Solution. For all $\varepsilon > 0$, there exists N such that

$$||x - x_n|| < \varepsilon \qquad ||x - x'_n|| < \varepsilon \quad \forall n \ge N.$$

Ths proves that the combined sequence

$$\widetilde{x}_n := \begin{cases} x_n & \text{if } n \text{ is odd,} \\ x'_n & \text{if } n \text{ is even,} \end{cases}$$

is convergent to x. Therefore $\lim \Lambda \widetilde{x}_n$ exists. However, this sequence contains the subsequences $(\Lambda x_{2n-1})_{n\geq 1}$ and $(\Lambda x'_{2n})_{n\geq 1}$, so both converge to the same limit. Since these subsequences are also respective subsequences of the convergent sequences $(\Lambda x_n)_{n\geq 1}$ and $(\Lambda x'_n)_{n\geq 1}$, the limits of the latter have to coincide.

We then define $Ax := \lim_{n \to \infty} \Lambda x_n$.

(c) Show that $Ax = \Lambda x$ for $x \in D(\Lambda)$.

Solution. If $x \in D(\Lambda)$, we can take the sequence with elements $x_n := x$ for all n. Therefore $Ax = \lim \Lambda x_n = \lim \Lambda x = \Lambda x$.

(d) Show that

$$||Ax||_Y \le C ||x||_X \quad \forall x \in X.$$

Solution. If $(x_n)_{n\geq 1}$ is a sequence of elements of $D(\Lambda)$ converging to $x \in X$, then $||x_n||_X \to ||x||_X$ and $||\Lambda x_n||_Y \to ||Ax||_Y$. Taking the limit in the inequality

 $||Ax_n||_Y \le C ||x_n||_X \quad \forall n,$

the result follows.

(e) Show that if $B \in \mathcal{B}(X; Y)$ satisfies

$$Bx = \Lambda x \quad \forall x \in D(\Lambda),$$

then B = A.

Solution. Let $(x_n)_{n\geq 1}$ be a sequence in $D(\Lambda)$ converging to x. Then, since A and B are linear and bounded $Ax = \lim Ax_n$ and $Bx = \lim Bx_n$. However, since $x_n \in D(\Lambda)$ and A and B extend Λ , then $Ax_n = \Lambda x_n = Bx_n$ and the result is proved.

6. The space $\mathcal{C}^{\infty}(\mathbb{R})$. (20 points) Consider the space $X := \mathcal{C}^{\infty}(\mathbb{R})$ of infinitely differentiable functions of a real variable. Define a metric in X with the following property: $f_n \to f$ if and only if

 $f_n^{(j)} \to f^{(j)}$ uniformly on compact sets of \mathbb{R} , for all $j \ge 0$.

(Prove that the metric you define has actually that property.) Show that X is a Fréchet space when endowed with such a metric. (Note that there are many metrics providing the same concept of convergence in X.)

Solution. [Sketch only] (a) Construction. Take $I_k := [-k, k]$ and the seminorms

$$|f|_k := \max_{\ell < k} \max_{x \in I_k} |f^{(\ell)}(x)| = \max_{\ell < k} \|f^{(\ell)}\|_{L^{\infty}(I_k)}.$$

This is a separating sequence of seminorms: to show it, note that if $|f|_k = 0$, then $f \equiv 0$ in I_k and $\bigcup_k I_k = \mathbb{R}$. We then build the metric

$$d(f,g) := \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|f-g|_k}{1+|f-g|_k}.$$

This construction is abstract and always leads to a metric space where convergence of sequence is equivalent to

$$\lim_{n} |f_n - f|_k = 0 \qquad \forall k.$$

(b) Characterization of convergence. It is clear that uniform convergence on compact sets of $(f_n^{(\ell)})_{n\geq 1}$ for all ℓ implies that for given k, $|f_n - f|_k \to 0$. (This follows from the fact that only k + 1 derivatives are involved here and we have restricted our attention to the interval I_k . Let now M be a compact set in \mathbb{R} and let ℓ be a fixed integer. We then take k such that $\ell \leq k$ and $M \subset [-k,k] = I_k$. Since $|f_n - f|_k \to 0$, then $f_n^{(\ell)} \to f^{(\ell)}$ uniformly in I_k and, therefore, in M.

(c) 'Fréchetness.' Let $(f_n)_{n\geq 1}$ be Cauchy in X. The general argument that works for all constructions of metric spaces from sequences of seminorms shows that this implies that for all $\varepsilon > 0$ and $k \ge 0$, there exists N such that

$$|f_n - f_m|_k < \varepsilon \qquad \forall n, m \ge N.$$

In a first instance, we only focus in the function without derivatives.

$$\|f_n - f_m\|_{L^{\infty}(I_k)} \le |f_n - f_m|_k < \varepsilon \qquad \forall n, m \ge N.$$

This proves that f_n converges uniformly to a continuous function in I_k . If we look at the interval I_{k+1} , we prove that $f_n|_{I_{k+1}}$ converges uniformly to a continuous function in I_{k+1} . By induction, we have $f_n \to f$ uniformly in I_k for all k, where the limit does not depend on k. We can now repeat the same argument with all the derivatives.

7. Diagonal operators in separable Hilbert spaces. $(4 \times 5 \text{ points})$ Let H be a complex separable Hilbert space and let $(\phi_n)_{n \ge 1}$ be a Hilbert basis of H. Consider a sequence $\lambda := (\lambda_n)_{n \ge 1} \in \ell^{\infty}$ and the operator defined with the series

$$\Lambda x := \sum_{n=1}^{\infty} \lambda_n(x, \phi_n) \phi_n.$$

(a) Show that Λ is bounded and

$$\|\Lambda\| \le \|\lambda\|_{\ell^{\infty}}.$$

Solution. We can easily estimate (the sum is orthogonal) for all M > N and $x \in X$:

$$\left\|\sum_{n=N+1}^{M} \lambda_n(x,\phi_n)\phi_n\right\|^2 = \sum_{n=N+1}^{M} |\lambda_n|^2 |(x,\phi_n)|^2 \le \|\lambda\|_{\ell^{\infty}}^2 \sum_{n=N+1}^{M} |\lambda_n|^2 |(x,\phi_n)|^2.$$

Since, by Parseval's identity,

$$\sum_{n=1}^{N} |(x,\phi_n)|^2 = ||x||^2$$

it follows that the partial sums $\Lambda_N x := \sum_{n=1}^N \lambda_n(x, \phi_n) \phi_n$ are Cauchy and, therefore, convergent. We can then bound

$$\|\Lambda_N x\|^2 = \left\|\sum_{n=1}^N \lambda_n(x, \phi_n) \phi_n\right\|^2 = \sum_{n=1}^N |\lambda_n|^2 |(x, \phi_n)|^2 \le \|\lambda\|_{\ell^{\infty}}^2 \|x\|^2 \qquad \forall x, \quad \forall N$$

and take the limit as $N \to \infty$, showing that $||\Lambda x|| \le ||\lambda||_{\ell^{\infty}} ||x||$ for all x. Since Λ is linear (this is very easy to check), then Λ is bounded and $||\Lambda|| \le ||\lambda||_{\ell^{\infty}}$.

(b) Show that Λ is injective if and only if $\lambda_n \neq 0$ for all n. (Hint. Compute $||\Lambda x||$ and study the kernel of Λ .)

Solution. If $\lambda_n = 0$, then $\Lambda \phi_n = \lambda_n \phi_n = 0$ and Λ is not injective. Assume now that $\lambda_n \neq 0$ for all n. If $\Lambda x = 0$, then

$$\sum_{n=0}^{\infty} |\lambda_n|^2 |(x,\phi_n)|^2 = 0,$$

which implies that $(x, \phi_n) = 0$ for all n. Since $(\phi_n)_{n \ge 1}$ is a Hilbert basis, it follows that x = 0 and Λ is injective.

(c) Show that Λ is invertible if and only if there exists C > 0 such that $|\lambda_n| \ge C$. (Hint. For one implication, construct the inverse. For the other one, use the Banach Isomorphism Theorem.)

Solution. If Λ is invertible, by the Banach Isomorphism Theorem, Λ^{-1} is bounded. Therefore

$$\|\Lambda^{-1}x\| \le D\|x\| \qquad \forall x \in H.$$

Taking $x = \phi_n$ and recalling that $\Lambda \phi_n = \lambda_n \phi_n$, it follows that

$$\frac{1}{|\lambda_n|} \le D \quad \forall n,$$

so the result follows with C = 1/D. Assume now that $|\lambda_n| \ge C > 0$ for all n. Then, the sequence $\mu_n := 1/\lambda_n$ is in ℓ^{∞} and the operator

$$\mathbf{M}x := \sum_{n=1}^{\infty} \mu_n(x, \phi_n) \phi_n$$

is well defined and bounded. Note that

$$(\Lambda x, \phi_n) = \lambda_n(x, \phi_n)$$
 $(Mx, \phi_n) = \frac{1}{\lambda_n}(x, \phi_n)$ $\forall n, \quad \forall x.$

This and the fact that $x = \sum_{n} (x, \phi_n) \phi_n$ prove that $M\Lambda x = \Lambda M x = x$, for all x.

(d) Consider the sequence of operators defined with the partial sums

$$\Lambda_N x := \sum_{n=1}^N \lambda_n(x, \phi_n) \phi_n, \qquad N \ge 1.$$

Show that if $\lambda_n \to 0$, then

$$\|\Lambda_N - \Lambda\| \to 0.$$

Solution. Applying the first result of this series (question (a)) to the sequence $(0, \ldots, 0, \lambda_{N+1}, \lambda_{N+2}, \ldots)$, it follows that

$$\|\Lambda_N - \Lambda\| \le \sup_{n \ge N+1} |\lambda_n|.$$

However, if $\lambda_n \to 0$, the right-hand side of the above converges to zero.