1. Let X be a set (with no particular algebraic structure). A function $d: X \times X \rightarrow \mathbb{R}$ is called a metric on X (and then X is called a metric space) when d satisfies the following axioms:

A sequence $\left(x_{n}\right) \subset X$ is said to converge to $x \in X$ when

Sequences in a metric space can only have one limit. The proof is based on this simple inequality

$$
d\left(x, x^{\prime}\right) \leq d\left(x, x_{n}\right)+d\left(x^{\prime}, x_{n}\right) .
$$

Finish it.

A sequence $\left(x_{n}\right)$ is said to be a Cauchy sequence (we typically just say the the sequence is Cauchy) when

Every convergent sequence is Cauchy. The proof is based on this simple inequality

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x\right)+d\left(x_{m}, x\right) .
$$

Finish it.

When in a metric space X, every Cauchy sequence is convergent, we say that X is complete.
2. Let now V be a vector space over \mathbb{R} or \mathbb{C}. A function $\|\cdot\|: V \rightarrow \mathbb{R}$ is said to be a norm when it satisfies the following axioms:

When a vector space is equipped with a norm, it is said to be a normed space. Given a norm on a vector space V, we can easily define a metric/distance on V :

The metric brings along the concepts of convergent and Cauchy sequence. A normed space that is complete is called a Banach space. Not every normed space is a Banach space.

Remark. Not every metric space is a normed space. To begin with, a metric space does not neet to have a vector structure, while a normed space does. Even on vector spaces, a metric derived from a norm takes values in the entire $[0, \infty)$, while many metrics take values in bounded intervals.
3. Consider now a vector space V and a function $(\cdot, \cdot): V \times V \rightarrow \mathbb{F}$ where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}, depending on the field over which V is defined. The bracket is called an inner product when it satisfies the following axioms:

Given an inner product, we can define the associated norm as follows:

Given an inner product and its associated norm, the following inequality, known as the Cauchy-Schwarz inequality, holds:

The proof in the real case is very simple. Fix $u, v \in V$ and consider the map

$$
\mathbb{R} \ni t \longmapsto(u+t v, u+t v) \in \mathbb{R}
$$

It is easy to show that this map is a quadratic polynomial with at most one zero. The CS inequality follows from this simple argument. The proof for the complex case is slightly more involved. Using the Cauchy-Schwarz inequality it is easy to prove that every inner product space is a normed space, i.e., the associated norm is actually a norm. We therefore have concepts of convergent and Cauchy sequences. An inner product space that is complete is called a Hilbert space.

Remark. Not every inner product space is a normed space. The norm associated to an inner product satisfies the paralelogram identity:
but not every norm satisfies this identity. Not every inner product space is a Hilbert space.

Quiz \# 1 - September 9 - MATH 806 (Fall 2015)

Your name:

1. (2 points) Define Banach space. (No formulas are needed for this definition.)
2. (2 points) Let H be an inner product space and let $\|x\|=(x, x)^{1 / 2}$ be the associated norm. State the Cauchy-Schwarz inequality.
3. (3 points) Let X be a metric space. Give two equivalent definitions of what we understand by a compact subset of X.
(Wait to be told before you start with the next page.)
4. (3 points) Let (X, d) be a metric space and let $\left(x_{n}\right)_{n \geq 1}$ be a Cauchy sequence in X. Assume that there exists a convergent subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$ (here $\left(n_{k}\right)_{k \geq 1}$ is an increasing sequence of positive integers). Show that $\left(x_{n}\right)_{n \geq 1}$ converges.
(You can discuss Problem 4 with one classmate.
You are not allowed to go back to Questions 1-3)

Quiz \# 2 - September 16 - MATH 806 (Fall 2015)

Your name:

1. (1 point) Define Hilbert space. (No formulas are needed for this definition.)
2. (1 point) Let H be an inner product space and $\|x\|=(x, x)^{1 / 2}$, where (\cdot, \cdot) is the inner product in H. Write the Cauchy-Schwarz inequality.
3. (2 points) Let $\left(x_{n}\right)_{n \geq 1}$ be a convergent sequence in an inner product space H. If $x=\lim _{n \rightarrow \infty} x_{n}$, show that

$$
\left(x_{n}, y\right) \longrightarrow(x, y) \quad \forall y \in H
$$

4. (3 points) Let H be a Hilbert space and $M \subset H$ be a subspace. Show that the set

$$
M^{\perp}:=\{x \in H:(x, m)=0 \quad \forall m \in M\}
$$

is a closed subspace of H.
5. (3 points) Define the spaces ℓ^{p} for $1 \leq p<\infty$ and for $p=\infty$. Define their norms.
6. (2 points) Write down Minkowski's inequality for sequences.
7. (3 points) Show that $\ell^{p} \subset \ell^{\infty}$ for every $p \in[1, \infty)$. Find $\mathbf{x} \in \ell^{\infty}$ such that $\mathbf{x} \notin \ell^{p}$ for any p.
8. (5 points) Let $K \in L^{2}(\Omega \times \Omega)$ and consider the operator $\Lambda: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ given by

$$
(\Lambda f)(x)=\int_{\Omega} K(x, y) f(y) d y
$$

(Here Ω is an open set in \mathbb{R}^{d}.) Show that Λ is bounded and

$$
\|\Lambda\| \leq\|K\|_{L^{2}(\Omega \times \Omega)} .
$$

Quiz \# 3 - September 23 - MATH 806 (Fall 2015)

Your name:

1. (3 points) Let $A: X \rightarrow Y$ be a bounded linear operator between two normed spaces X and Y. Give three different but equivalent definitions of the operator norm $\|A\|$.
2. (2 points) Let $\|\cdot\|_{*}$ and $\|\cdot\|_{\circ}$ be two norms defined in a vector space X. What do we mean when we say that these norms are equivalent?
3. (2 points) The Cauchy-Schwarz inequality states that in an inner product space H,

$$
|(x, y)| \leq\|x\|\|y\| \quad \forall x, y \in H
$$

where (\cdot, \cdot) is the inner product and $\|\cdot\|$ the associated norm. Give necessary and sufficient conditions on x and y so that the inequality is an equality.
4. (2 points) Show that in an inner product space H

$$
\|x\|=\sup _{0 \neq y \in H} \frac{|(x, y)|}{\|y\|} \quad \forall x \in H .
$$

Is the supremum a maximum?
5. (2 points) Find an element of ℓ^{2} that is not in ℓ^{1}.
6. (2 points) Let $g \in L^{\infty}(\Omega)$, where Ω is an open set in \mathbb{R}^{d}. Consider the operator

$$
L^{p}(\Omega) \ni f \longmapsto \Lambda f:=g f \in L^{p}(\Omega),
$$

where $p \in[1, \infty)$. Show that Λ is bounded and $\|\Lambda\| \leq\|g\|_{L^{\infty}(\Omega)}$. (Note that they are actually equal, but I am not asking you for the proof of equality.)
7. Let H be an infinite dimensional inner product space and let $\left(\phi_{n}\right)_{n \geq 1}$ be an orthonormal sequence in H. Such a sequence can always be built using the Gram-Schmidt method applied to a sequence of linearly independent elements of H. (Do no prove this!)
(a) (2 points) Show that $\left(\phi_{n}\right)_{n \geq 1}$ does not contain Cauchy subsequences.
(b) (1 points) Use (a) to give a direct proof that in an infinite dimensional inner product space the unit ball is not compact.
8. (3 points) Let $\left(\phi_{n}\right)_{n \geq 1}$ be an orthonormal sequence in a Hilbert space H. Bessel's inequality states that

$$
\sum_{n=1}^{\infty}\left|\left(x, \phi_{n}\right)\right|^{2} \leq\|x\|^{2} \quad \forall x \in H
$$

Use this inequality to show that the series

$$
\sum_{n=1}^{\infty}\left(x, \phi_{n}\right) \phi_{n}
$$

converges in H for all $x \in H$. (Hint. Show that the sequence of partial sums is Cauchy.)

Quiz \# 4 - September 30 - MATH 806 (Fall 2015)

Your name:

1. (2 points) Let X be a normed space. Define its dual X^{*} and the norm in X^{*}.
2. (3 points) Let $A: X \rightarrow Y$ and $B: Y \rightarrow Z$ be bounded operators. Show that $B A: X \rightarrow Z$ is bounded and

$$
\|B A\| \leq\|B\|\|A\| .
$$

Solution. For all $x \in X$,

$$
\|(B A) x\|_{Z}=\|B(A x)\|_{Z} \leq\|B\|\|A x\|_{Y} \leq\|B\|\|A\|\|x\|_{X},
$$

where we have used the boundedness inequalities for B and A. This implies the boundedness of $B A$ and the inequality $\|B A\| \leq\|B\|\|A\|$.
3. (3 points) Let X be a complex normed space and let V be a subspace of X. What does the extension theorem say? (Note that the full statement says two things about the outcome.)
4. (3 points) Let M be a non-empty subset of an inner product space H. Show that

$$
M^{\perp}:=\{x \in H:(x, m)=0 \quad \forall m \in M\}
$$

is a closed subspace of H.
Solution. If $x, y \in M^{\perp}$ and $\alpha, \beta \in \mathbb{K}$, then

$$
(\alpha x+\beta y, m)=\alpha(x, m)+\beta(y, m)=0 \quad \forall m \in M
$$

so $\alpha x+\beta y \in M^{\perp}$. If $\left(x_{n}\right)_{n \geq 1}$ is a sequence in M^{\perp} and $x=\lim _{n} x_{n}$, then

$$
0=\left(x_{n}, m\right) \longrightarrow(x, m) \quad \forall m \in M,
$$

which proves that $x \in M^{\perp}$. Thus M^{\perp} is closed.
5. (3 points) Let V be a subspace of a normed space X. Prove that if 0 is an interior point to V, then $V=X$. (Hint. Build a ball around the origin.)

Solution. If 0 is an interior point to V, then there exists ρ such that $B(0, \rho) \subset V$. Let $0 \neq x \in X$. Note that $y=\frac{1}{2 \rho\|x\|} x \in B(0, \rho) \subset V$ and therefore $x=2 \rho\|x\| y \in V$.
6. (6 points) Let H be a Hilbert space and $\left(\phi_{n}\right)_{n \geq 1}$ be an orthonormal sequence. Let $\left(\alpha_{n}\right)_{n \geq 1} \in \ell^{2}$.
(a) Show that the elements

$$
s_{N}:=\sum_{n=1}^{N} \alpha_{n} \phi_{n}
$$

define a Cauchy sequence in H. (Hint. Compute $\left\|s_{N}-s_{M}\right\|^{2}$ when $M>N$.)
Solution. Using the fact that $\left(\phi_{n}\right)_{n \geq 1}$ is an orthonormal sequences

$$
\left\|s_{N}-s_{M}\right\|^{2}=\left\|\sum_{n=N+1}^{M} \alpha_{n} \phi_{n}\right\|^{2}=\sum_{n=N+1}^{M}\left|\alpha_{n}\right|^{2}=\sigma_{M}-\sigma_{N}=\left|\sigma_{M}-\sigma_{N}\right|,
$$

where $\sigma_{N}=\sum_{n=1}^{N}\left|\alpha_{n}\right|^{2}$ is the partial sum of the convergent series defining the square of the ℓ^{2} norm of $\left(\alpha_{n}\right)_{n \geq 1}$. This proves the result.
(b) Compute

$$
\left\|s_{N}\right\|^{2} \quad \text { and } \quad \lim _{N \rightarrow \infty}\left\|s_{N}\right\| .
$$

Solution. Using the same argument

$$
\left\|s_{N}\right\|^{2}=\sum_{n=1}^{N}\left|\alpha_{n}\right|^{2} \longrightarrow\left\|\left(\alpha_{n}\right)_{n \geq 1}\right\|_{\ell^{2}}^{2}
$$

(c) Use (a) and (b) to prove that the map

$$
\ell^{2} \ni \alpha=\left(\alpha_{n}\right)_{n \geq 1} \longmapsto T \alpha:=\sum_{n=1}^{\infty} \alpha_{n} \phi_{n} \in H
$$

is an isometry from ℓ^{2} to H.
Solution. It is simple to prove that T is linear. We also know that for all $\alpha \in \ell^{2}$

$$
T \alpha=\lim _{N} s_{N}
$$

and therefore $\|T \alpha\|=\lim \left\|s_{N}\right\|=\|\alpha\|_{\ell^{2}}$.

Work day - October 5 - MATH 806 (Fall 2015)

The Baire Category Theorem

Let X be a complete metric space. We say that and $V \subset X$ is dense in X when $\bar{V}=X$ or, equivalently, when $V \cap \Omega \neq \emptyset$ for all non-empty open $\Omega \subset X$. Consider now a sequence of open dense subsets $\left(V_{k}\right)_{k \geq 1}$ of X. Take Ω non-empty open and $x_{0} \in \Omega$. There exists $r_{0}>0$ (which we can assume to satisfy $r_{0} \leq 1$) such that

$$
B\left(x_{0}, 3 r_{0}\right):=\left\{x \in X: d\left(x, x_{0}\right)<3 r_{0}\right\} \subset \Omega .
$$

For every $k \geq 1$, we can find $x_{k} \in X$ and $r_{k}>0$ such that

$$
B\left(x_{k}, 3 r_{k}\right) \subset V_{k} \cap B\left(x_{k-1}, r_{k-1}\right) .
$$

Prove it.
Solution. The set V_{k} is open and dense. Therefore $V_{k} \cap B\left(x_{k-1}, r_{k-1}\right)$ is nonempty and we can find $x_{k} \in V_{k} \cap B\left(x_{k-1}, r_{k-1}\right)$. The set is also open (intersection of two open sets) and, therefore, we can find a ball centered in x_{k} contained in the set. We call the radius $3 r_{k}$.

By construction we can make

$$
r_{k} \leq \frac{r_{k-1}}{3} \leq \ldots \leq \frac{r_{0}}{3^{k}} \leq \frac{1}{3^{k}}
$$

Prove it.
Solution. We can take $3 r_{k-1} \leq r_{k}$ in the k-th step.
Note that $x_{k} \in B\left(x_{k-1}, r_{k-1}\right)$ for all k and therefore $d\left(x_{k+1}, x_{k}\right) \leq 1 / 3^{k}$. With this it is simple to show that the sequence $\left(x_{k}\right)_{k \geq 1}$ is Cauchy. Prove it.

Solution. For any $n \geq 1$

$$
\begin{aligned}
d\left(x_{k}, x_{k+n}\right) & \leq d\left(x_{k}, x_{k+1}\right)+d\left(x_{k+1}, x_{k+2}\right)+\ldots+d\left(x_{k+n-1}, x_{k+n}\right) \\
& \leq \frac{1}{3^{k}}+\frac{1}{3^{k+1}}+\ldots+\frac{1}{3^{k+n-1}}
\end{aligned}
$$

This shows that $\left(x_{k}\right)_{k \geq 1}$ is Cauchy, since $\sum_{k=0}^{\infty} 1 / 3^{k}<\infty$.
Let x^{*} be the limit of this sequence (X is complete). Then

$$
d\left(x^{*}, x_{k}\right) \leq \sum_{j=k}^{\infty} d\left(x_{j+1}, x_{j}\right) \quad \forall k .
$$

Prove it.

Solution. By the triangle inequality

$$
\begin{aligned}
d\left(x^{*}, x_{k}\right) & \leq d\left(x_{k}, x_{k+1}\right)+\ldots+d\left(x_{k+N-1}, x_{k+N}\right)+d\left(x_{k+N}, x^{*}\right) \\
& \leq \sum_{j=k}^{\infty} d\left(x_{j+1}, x_{j}\right)+d\left(x_{k+N}, x^{*}\right) \quad \forall N \geq 0 .
\end{aligned}
$$

Since we can make the last term in the sum as small as we want by taking N large enough, this proves the inequality.

This implies that

$$
d\left(x^{*}, x_{k}\right) \leq \frac{3}{2} r_{k} \quad \forall k,
$$

and therefore $x^{*} \in B\left(x_{k}, 3 r_{k}\right) \subset V_{k}$. Prove it.
Solution. Using the previous inequality and the bounds on the radii

$$
\begin{aligned}
d\left(x_{k}, x^{*}\right) & \leq \sum_{j=k}^{\infty} d\left(x_{j+1}, x_{j}\right) \leq \sum_{j=k}^{\infty} r_{j} \\
& \leq \sum_{\ell=1}^{\infty} \frac{r_{k}}{3^{\ell}}=\frac{2}{3} r_{k} .
\end{aligned}
$$

Note that we have show that there exists a point x^{*} such that

$$
x^{*} \in \cap_{k=1}^{\infty} V_{k} .
$$

However, $d\left(x^{*}, x_{0}\right) \leq \frac{3}{2} r_{0}$ and therefore $x_{0} \in B\left(x_{0}, 3 r_{0}\right) \subset \Omega$. Summing up, for every open set Ω, there exists

$$
x^{*} \in \Omega \cap\left(\cap_{k=1}^{\infty} V_{k}\right) .
$$

This proves that $\cap_{k=1}^{\infty} V_{k}$ is dense in X. This completes the proof of the following result:
Baire Category Theorem. The intersection of a sequence of dense open sets in a complete metric space is dense in the space. In other words, if X is a complete metric space and V_{k} are open dense subsets of X for all $k \geq 1$, then $\cap_{k=1}^{\infty} V_{k}$ is dense in X.

Let now F_{n} be closed subsets of a complete metric space. Prove that if the interior of F_{n} is empty for all n, that is, $\dot{F}_{n}=\emptyset$, then $\cup_{n=1}^{\infty} F_{n} \neq X$. (Hint. Use the Baire category theorem with $V_{n}:=X \backslash F_{n}$. You only need to use that $\cap_{n=1}^{\infty} V_{n}$ is not empty.)

Solution. Let $V_{n}:=X \backslash F_{n}$, which is open since F_{n} is closed. Note that $\overline{V_{n}}=X \backslash \operatorname{int} F_{n}$, so the hypotheses on F_{n} imply that V_{n} is open and dense in X for all n. Therefore, $\cap_{n} V_{n}=X \backslash \cup_{n} F_{n}$ is non-empty. This proves the result.

Rephrased in a slightly different (while equivalent) way, we have proved the following well-known consequence of the Baire Category Theorem.

Proposition. If X is a complete metric space and $X=\cup_{n=1}^{\infty} F_{n}$ with F_{n} closed for all n, then there exists n such that $\dot{F}_{n} \neq \emptyset$.

Work day — October 7 - MATH 806 (Fall 2015)

The Banach-Steinhaus Theorem

Today X and Y will be two generic Banach spaces. Let now $\Lambda \in \mathcal{B}(X ; Y)$. Prove the inequality

$$
\|\Lambda x\|_{Y} \geq\left\|\Lambda x_{0}\right\|_{Y}-\|\Lambda\|\left\|x-x_{0}\right\|_{X} \quad \forall x, x_{0} \in X
$$

and use it to show that for all $C>0$ the set

$$
S_{C}:=\left\{x \in X:\|\Lambda x\|_{Y}>C\right\}
$$

is open.
Solution. Since $\left\|\Lambda\left(x-x_{0}\right)\right\|_{Y} \leq\|\Lambda\|\left\|x-x_{0}\right\|_{X}$ (by definition of operator norm), the inverse triangle inequality

$$
\begin{aligned}
\|\Lambda x\|_{Y} & =\left\|\Lambda x_{0}+\Lambda\left(x-x_{0}\right)\right\|_{Y} \\
& \geq\left|\left\|\Lambda x_{0}\right\|_{Y}-\left\|\Lambda\left(x-x_{0}\right)\right\|_{Y}\right| \geq\left\|\Lambda x_{0}\right\|_{Y}-\left\|\Lambda\left(x-x_{0}\right)\right\|_{Y} \\
& \geq\left\|\Lambda x_{0}\right\|_{Y}-\|\Lambda\|\left\|x-x_{0}\right\|_{X}
\end{aligned}
$$

proves the inequality. If $x_{0} \in S_{C}$, then $\left\|\Lambda x_{0}\right\|_{Y}=C+\varepsilon$ with $\varepsilon>0$. Let then $\rho:=\varepsilon /(2\|\Lambda\|)$. If $\left\|x-x_{0}\right\|_{X}<\rho$, then

$$
\|\Lambda x\|_{Y}>C+\varepsilon-\|\Lambda\| \rho=C+\varepsilon / 2>C,
$$

which proves that $B\left(x_{0} ; \rho\right) \subset S_{C}$ and therefore S_{C} is open.
Show that if there exists $x_{0} \in X$ and $\rho>0$ such that

$$
S_{C} \cap B\left(x_{0} ; \rho\right)=\emptyset, \quad \text { where } B\left(x_{0} ; \rho\right):=\left\{x \in X:\left\|x-x_{0}\right\|_{X}<\rho\right\}
$$

then, using the inequality

$$
\|\Lambda x\|_{Y} \leq\left\|\Lambda x_{0}\right\|_{Y}+\left\|\Lambda\left(x+x_{0}\right)\right\|_{Y} \quad\|x\|_{X} \leq \rho
$$

we can prove that

$$
\|\Lambda\| \leq \frac{2 C}{\rho}
$$

Solution. By definition of S_{C} and noting that $S_{C} \cap B\left(x_{0} ; \rho\right)=\emptyset$, it is clear that $\|\Lambda z\|_{Y} \leq C$ for all $z \in B\left(x_{0} ; \rho\right)$. By continuity of Λ it is then clear that $\|\Lambda z\|_{Y} \leq C$ if $\left\|z-x_{0}\right\|_{X} \leq \rho$. Therefore,

$$
\begin{aligned}
\|\Lambda x\|_{Y} & =\left\|\Lambda\left(x+x_{0}\right)-\Lambda x_{0}\right\| \\
& \leq\left\|\Lambda x_{0}\right\|_{Y}+\left\|\Lambda\left(x+x_{0}\right)\right\|_{Y} \leq 2 C \quad\|x\|_{X} \leq \rho
\end{aligned}
$$

and scaling

$$
\|\Lambda x\|_{Y}=\frac{1}{\rho}\|\Lambda(\rho x)\| \leq \frac{2 C}{\rho} \quad \text { if }\|x\|=1
$$

Let now $\mathcal{F} \subset \mathcal{B}(X ; Y)$ be an arbitrary collection of bounded linear operators from X to Y. Show that

$$
V_{n}:=\left\{x:\|\Lambda x\|_{Y}>n \quad \text { for some } \Lambda \in \mathcal{F}\right\}
$$

is open.
(Hint. Write it as the union of open sets.)
Solution. We can write

$$
V_{n}=\cup_{\Lambda \in \mathcal{F}}\left\{x:\|\Lambda x\|_{Y}>n\right\}
$$

and each of the sets in the right-hand side is open.
Show that if V_{n} is not dense in X, then

$$
\sup _{\Lambda \in \mathcal{F}}\|\Lambda\|<\infty .
$$

(Hint. $A \subset X$ is not dense in X if and only if there exists a ball $B\left(x_{0} ; \rho\right)$ that does not intersect A.))

Solution. If V_{n} is not dense in X, there exists a ball $B\left(x_{0} ; \rho\right)$ not intersecting V_{n}. Therefore

$$
\left\{x:\|\Lambda x\|_{Y}>n\right\} \cap B\left(x_{0} ; \rho\right)=\emptyset \quad \forall \Lambda \in \mathcal{F}
$$

and by what we proved above

$$
\|\Lambda\| \leq \frac{2 n}{\rho} \quad \forall \Lambda \in \mathcal{F}
$$

Use the previous arguments and Baire's Theorem ${ }^{1}$ to prove the following result:
Banach-Steinhaus Theorem (a.k.a. Uniform Boundedness Principle)
If X and Y are Banach spaces and $\mathcal{F} \subset \mathcal{B}(X ; Y)$, then either

$$
\sup _{\Lambda \in \mathcal{F}}\|\Lambda\|<\infty
$$

or the set

$$
\left\{x \in X: \sup _{\Lambda \in \mathcal{F}}\|\Lambda x\|_{Y}=\infty\right\}
$$

is dense in X.
Solution. Note that

$$
\begin{aligned}
\left\{x: \sup _{\Lambda \in \mathcal{F}}\|\Lambda x\|_{Y}=\infty\right\} & =\cap_{n=1}^{\infty}\left\{x:\|\Lambda x\|_{Y}>n \quad \text { for some } \Lambda \in \mathcal{F}\right\} \\
& =\cap_{n=1}^{\infty} V_{n} .
\end{aligned}
$$

We have two options:

[^0](a) One of the sets V_{n} is not dense in X and, therefore, the set \mathcal{F} is bounded in $\mathcal{B}(X ; Y)$.
(b) All the sets V_{n} are dense in X. By Baire's Theorem, the intersection of all of them is dense in X.

Note that the following result is a partial statement of the Banach-Steinhaus Theorem
Let $\mathcal{F} \subset \mathcal{B}(X ; Y)$, where X and Y are Banach spaces. If

$$
\sup _{\Lambda \in \mathcal{F}}\|\Lambda x\|_{Y}=: C_{x}<\infty \quad \forall x \in X
$$

then the set \mathcal{F} is bounded in the operator norm.

Prove the following corollary now (note that you need to prove linearity and boundedness):
Corollary. Let $\left(\Lambda_{n}\right)_{n \geq 1}$ be a sequence in $\mathcal{B}(X ; Y)$, where X and Y are Banach spaces. If the following limit exists

$$
\lim _{n \rightarrow \infty} \Lambda_{n} x=: \Lambda x \quad \forall x \in X
$$

then $\Lambda: X \rightarrow Y$ is linear and bounded.

Solution. Let $x, x^{\prime} \in X$ and $\alpha, \beta \in \mathbb{K}$. Then

$$
\begin{aligned}
\Lambda\left(\alpha x+\beta x^{\prime}\right) & =\lim _{n \rightarrow \infty} \Lambda_{n}\left(\alpha x+\beta x^{\prime}\right) \\
& =\lim _{n \rightarrow \infty}\left(\alpha \Lambda_{n} x+\beta \Lambda_{n} x^{\prime}\right) \\
& =\alpha \lim _{n \rightarrow \infty} \Lambda_{n} x+\beta \lim _{n \rightarrow \infty} \Lambda_{n} x^{\prime} \\
& =\alpha \Lambda x+\beta \Lambda x^{\prime},
\end{aligned}
$$

since Λ_{n} is linear for all n. Consider now the set $\mathcal{F}:=\left\{\Lambda_{n}: n \geq 1\right\}$. Since $\Lambda_{n} x$ is convergent, then $\left\|\Lambda_{n} x\right\| \leq C_{x}$ for all n and all $x \in X$. By the Banach-Steinhaus theorem there exists C such that $\left\|\Lambda_{n}\right\| \leq C$ for all n. Since $\Lambda_{n} x \rightarrow \Lambda x$, then

$$
\|\Lambda x\|=\lim _{n \rightarrow \infty}\left\|\Lambda_{n} x\right\| \leq \limsup _{n \rightarrow \infty}\left\|\Lambda_{n}\right\|\|x\| \leq C\|x\|,
$$

which proves that Λ is bounded.
Note that the result does not make any claims on whether $\Lambda_{n} \rightarrow \Lambda$ (in the operator norm). The result can be read as: the pointwise limit of a sequence of bounded linear operator is a bounded linear operator.
To show the following result, identify $x \in X$ with $i x \in X^{* *}$, where

$$
(i x)(\phi):=\phi(x) \quad x \in X, \quad \phi \in X^{*} .
$$

Corollary. Let X be a Banach space and let $x_{n} \rightharpoonup x$. Then there exists $C>0$ such that

$$
\left\|x_{n}\right\| \leq C \quad \forall n
$$

In other words, weakly convergent sequences are bounded.
Solution. Weak convergence means that

$$
\phi\left(x_{n}\right) \longrightarrow \phi(x) \quad \forall \phi \in X^{*},
$$

or, equivalently,

$$
\left(i x_{n}\right)(\phi) \longrightarrow(i x)(\phi) \quad \forall \phi \in X^{*} .
$$

We then apply the previous result with $\Lambda_{n}:=i x_{n}: X^{*} \rightarrow \mathbb{K}$, to get $\left\|x_{n}\right\|_{X}=$ $\left\|i x_{n}\right\|_{X^{*} *} \leq C$ for all n. This proves the result.

[^0]: ${ }^{1}$ The intersection of a sequence of dense open sets in a complete metric space is dense in the space. In other words, if X is a complete metric space and V_{n} are open dense subsets of X for all $n \geq 1$, then $\cap_{n=1}^{\infty} V_{n}$ is dense in X.

