
Your first day at work – MATH 806 (Fall 2015)

1. Let X be a set (with no particular algebraic structure). A function d : X×X → R is
called a metric on X (and then X is called a metric space) when d satisfies the following
axioms:

A sequence (xn) ⊂ X is said to converge to x ∈ X when

Sequences in a metric space can only have one limit. The proof is based on this simple
inequality

d(x, x′) ≤ d(x, xn) + d(x′, xn).

Finish it.

A sequence (xn) is said to be a Cauchy sequence (we typically just say the the sequence
is Cauchy) when

Every convergent sequence is Cauchy. The proof is based on this simple inequality

d(xn, xm) ≤ d(xn, x) + d(xm, x).

Finish it.

When in a metric space X, every Cauchy sequence is convergent, we say that X is
complete.
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2. Let now V be a vector space over R or C. A function ‖ · ‖ : V → R is said to be a
norm when it satisfies the following axioms:

When a vector space is equipped with a norm, it is said to be a normed space. Given a
norm on a vector space V , we can easily define a metric/distance on V :

The metric brings along the concepts of convergent and Cauchy sequence. A normed
space that is complete is called a Banach space. Not every normed space is a Banach
space.

Remark. Not every metric space is a normed space. To begin with, a metric space does
not neet to have a vector structure, while a normed space does. Even on vector spaces,
a metric derived from a norm takes values in the entire [0,∞), while many metrics take
values in bounded intervals.

3. Consider now a vector space V and a function (·, ·) : V × V → F where F = R or C,
depending on the field over which V is defined. The bracket is called an inner product
when it satisfies the following axioms:

Given an inner product, we can define the associated norm as follows:
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Given an inner product and its associated norm, the following inequality, known as the
Cauchy-Schwarz inequality, holds:

The proof in the real case is very simple. Fix u, v ∈ V and consider the map

R 3 t 7−→ (u+ t v, u+ t v) ∈ R.

It is easy to show that this map is a quadratic polynomial with at most one zero. The
CS inequality follows from this simple argument. The proof for the complex case is
slightly more involved. Using the Cauchy-Schwarz inequality it is easy to prove that
every inner product space is a normed space, i.e., the associated norm is actually a norm.
We therefore have concepts of convergent and Cauchy sequences. An inner product space
that is complete is called a Hilbert space.

Remark. Not every inner product space is a normed space. The norm associated to an
inner product satisfies the paralelogram identity:

but not every norm satisfies this identity. Not every inner product space is a Hilbert
space.
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Quiz # 1 — September 9 – MATH 806 (Fall 2015)

Your name:

1. (2 points) Define Banach space. (No formulas are needed for this definition.)

2. (2 points) Let H be an inner product space and let ‖x‖ = (x, x)1/2 be the associated
norm. State the Cauchy-Schwarz inequality.

3. (3 points) Let X be a metric space. Give two equivalent definitions of what we
understand by a compact subset of X.

(Wait to be told before you start with the next page.)
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4. (3 points) Let (X, d) be a metric space and let (xn)n≥1 be a Cauchy sequence in
X. Assume that there exists a convergent subsequence (xnk

)k≥1 (here (nk)k≥1 is an
increasing sequence of positive integers). Show that (xn)n≥1 converges.

(You can discuss Problem 4 with one classmate.
You are not allowed to go back to Questions 1–3)
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Quiz # 2 — September 16 – MATH 806 (Fall 2015)

Your name:

1. (1 point) Define Hilbert space. (No formulas are needed for this definition.)

2. (1 point) Let H be an inner product space and ‖x‖ = (x, x)1/2, where (·, ·) is the
inner product in H. Write the Cauchy-Schwarz inequality.

3. (2 points) Let (xn)n≥1 be a convergent sequence in an inner product space H. If
x = limn→∞ xn, show that

(xn, y) −→ (x, y) ∀y ∈ H.

4. (3 points) Let H be a Hilbert space and M ⊂ H be a subspace. Show that the set

M⊥ := {x ∈ H : (x,m) = 0 ∀m ∈M}

is a closed subspace of H.
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5. (3 points) Define the spaces `p for 1 ≤ p <∞ and for p =∞. Define their norms.

6. (2 points) Write down Minkowski’s inequality for sequences.

7. (3 points) Show that `p ⊂ `∞ for every p ∈ [1,∞). Find x ∈ `∞ such that x 6∈ `p
for any p.
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8. (5 points) Let K ∈ L2(Ω× Ω) and consider the operator Λ : L2(Ω) → L2(Ω) given
by

(Λf)(x) =

∫
Ω

K(x, y)f(y)dy.

(Here Ω is an open set in Rd.) Show that Λ is bounded and

‖Λ‖ ≤ ‖K‖L2(Ω×Ω).
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Quiz # 3 — September 23 – MATH 806 (Fall 2015)

Your name:

1. (3 points) Let A : X → Y be a bounded linear operator between two normed spaces
X and Y . Give three different but equivalent definitions of the operator norm ‖A‖.

2. (2 points) Let ‖ · ‖∗ and ‖ · ‖◦ be two norms defined in a vector space X. What do
we mean when we say that these norms are equivalent?

3. (2 points) The Cauchy-Schwarz inequality states that in an inner product space H,

|(x, y)| ≤ ‖x‖ ‖y‖ ∀x, y ∈ H,

where ( · , · ) is the inner product and ‖ · ‖ the associated norm. Give necessary and
sufficient conditions on x and y so that the inequality is an equality.
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4. (2 points) Show that in an inner product space H

‖x‖ = sup
06=y∈H

|(x, y)|
‖y‖

∀x ∈ H.

Is the supremum a maximum?

5. (2 points) Find an element of `2 that is not in `1.

6. (2 points) Let g ∈ L∞(Ω), where Ω is an open set in Rd. Consider the operator

Lp(Ω) 3 f 7−→ Λf := g f ∈ Lp(Ω),

where p ∈ [1,∞). Show that Λ is bounded and ‖Λ‖ ≤ ‖g‖L∞(Ω). (Note that they
are actually equal, but I am not asking you for the proof of equality.)
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7. Let H be an infinite dimensional inner product space and let (φn)n≥1 be an orthonor-
mal sequence in H. Such a sequence can always be built using the Gram-Schmidt
method applied to a sequence of linearly independent elements of H. (Do no prove
this!)

(a) (2 points) Show that (φn)n≥1 does not contain Cauchy subsequences.

(b) (1 points) Use (a) to give a direct proof that in an infinite dimensional inner
product space the unit ball is not compact.
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8. (3 points) Let (φn)n≥1 be an orthonormal sequence in a Hilbert space H. Bessel’s
inequality states that

∞∑
n=1

|(x, φn)|2 ≤ ‖x‖2 ∀x ∈ H.

Use this inequality to show that the series

∞∑
n=1

(x, φn)φn

converges in H for all x ∈ H. (Hint. Show that the sequence of partial sums is
Cauchy.)
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Quiz # 4 — September 30 – MATH 806 (Fall 2015)

Your name:

1. (2 points) Let X be a normed space. Define its dual X∗ and the norm in X∗.

2. (3 points) Let A : X → Y and B : Y → Z be bounded operators. Show that
BA : X → Z is bounded and

‖BA‖ ≤ ‖B‖ ‖A‖.

Solution. For all x ∈ X,

‖(BA)x‖Z = ‖B(Ax)‖Z ≤ ‖B‖ ‖Ax‖Y ≤ ‖B‖ ‖A‖ ‖x‖X ,

where we have used the boundedness inequalities for B and A. This implies
the boundedness of BA and the inequality ‖BA‖ ≤ ‖B‖ ‖A‖.

3. (3 points) Let X be a complex normed space and let V be a subspace of X. What
does the extension theorem say? (Note that the full statement says two things about
the outcome.)

4. (3 points) Let M be a non-empty subset of an inner product space H. Show that

M⊥ := {x ∈ H : (x,m) = 0 ∀m ∈M}

is a closed subspace of H.

Solution. If x, y ∈M⊥ and α, β ∈ K, then

(αx+ β y,m) = α (x,m) + β (y,m) = 0 ∀m ∈M,

so αx+ β y ∈M⊥. If (xn)n≥1 is a sequence in M⊥ and x = limn xn, then

0 = (xn,m) −→ (x,m) ∀m ∈M,

which proves that x ∈M⊥. Thus M⊥ is closed.

5. (3 points) Let V be a subspace of a normed space X. Prove that if 0 is an interior
point to V , then V = X. (Hint. Build a ball around the origin.)

Solution. If 0 is an interior point to V , then there exists ρ such that
B(0, ρ) ⊂ V . Let 0 6= x ∈ X. Note that y = 1

2ρ‖x‖x ∈ B(0, ρ) ⊂ V and

therefore x = 2ρ‖x‖y ∈ V .

6. (6 points) Let H be a Hilbert space and (φn)n≥1 be an orthonormal sequence. Let
(αn)n≥1 ∈ `2.
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(a) Show that the elements

sN :=
N∑
n=1

αnφn

define a Cauchy sequence in H. (Hint. Compute ‖sN − sM‖2 when M > N .)

Solution. Using the fact that (φn)n≥1 is an orthonormal sequences

‖sN − sM‖2 =

∥∥∥∥∥
M∑

n=N+1

αnφn

∥∥∥∥∥
2

=
M∑

n=N+1

|αn|2 = σM − σN = |σM − σN |,

where σN =
∑N

n=1 |αn|2 is the partial sum of the convergent series defin-
ing the square of the `2 norm of (αn)n≥1. This proves the result.

(b) Compute
‖sN‖2 and lim

N→∞
‖sN‖.

Solution. Using the same argument

‖sN‖2 =
N∑
n=1

|αn|2 −→ ‖(αn)n≥1‖2
`2 .

(c) Use (a) and (b) to prove that the map

`2 3 α = (αn)n≥1 7−→ Tα :=
∞∑
n=1

αnφn ∈ H

is an isometry from `2 to H.

Solution. It is simple to prove that T is linear. We also know that for
all α ∈ `2

Tα = lim
N
sN

and therefore ‖Tα‖ = lim ‖sN‖ = ‖α‖`2 .
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Work day — October 5 – MATH 806 (Fall 2015)

The Baire Category Theorem

Let X be a complete metric space. We say that and V ⊂ X is dense in X when V = X
or, equivalently, when V ∩Ω 6= ∅ for all non-empty open Ω ⊂ X. Consider now a sequence
of open dense subsets (Vk)k≥1 of X. Take Ω non-empty open and x0 ∈ Ω. There exists
r0 > 0 (which we can assume to satisfy r0 ≤ 1) such that

B(x0, 3r0) := {x ∈ X : d(x, x0) < 3r0} ⊂ Ω.

For every k ≥ 1, we can find xk ∈ X and rk > 0 such that

B(xk, 3rk) ⊂ Vk ∩B(xk−1, rk−1).

Prove it.

Solution. The set Vk is open and dense. Therefore Vk ∩B(xk−1, rk−1) is non-
empty and we can find xk ∈ Vk∩B(xk−1, rk−1). The set is also open (intersection
of two open sets) and, therefore, we can find a ball centered in xk contained in
the set. We call the radius 3rk.

By construction we can make

rk ≤
rk−1

3
≤ . . . ≤ r0

3k
≤ 1

3k
.

Prove it.

Solution. We can take 3rk−1 ≤ rk in the k-th step.

Note that xk ∈ B(xk−1, rk−1) for all k and therefore d(xk+1, xk) ≤ 1/3k. With this it is
simple to show that the sequence (xk)k≥1 is Cauchy. Prove it.

Solution. For any n ≥ 1

d(xk, xk+n) ≤ d(xk, xk+1) + d(xk+1, xk+2) + . . .+ d(xk+n−1, xk+n)

≤ 1

3k
+

1

3k+1
+ . . .+

1

3k+n−1
.

This shows that (xk)k≥1 is Cauchy, since
∑∞

k=0 1/3k <∞.

Let x∗ be the limit of this sequence (X is complete). Then

d(x∗, xk) ≤
∞∑
j=k

d(xj+1, xj) ∀k.

Prove it.
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Solution. By the triangle inequality

d(x∗, xk) ≤ d(xk, xk+1) + . . .+ d(xk+N−1, xk+N) + d(xk+N , x
∗)

≤
∞∑
j=k

d(xj+1, xj) + d(xk+N , x
∗) ∀N ≥ 0.

Since we can make the last term in the sum as small as we want by taking N
large enough, this proves the inequality.

This implies that

d(x∗, xk) ≤
3

2
rk ∀k,

and therefore x∗ ∈ B(xk, 3rk) ⊂ Vk. Prove it.

Solution. Using the previous inequality and the bounds on the radii

d(xk, x
∗) ≤

∞∑
j=k

d(xj+1, xj) ≤
∞∑
j=k

rj

≤
∞∑
`=1

rk
3`

=
2

3
rk.

Note that we have show that there exists a point x∗ such that

x∗ ∈ ∩∞k=1Vk.

However, d(x∗, x0) ≤ 3
2
r0 and therefore x0 ∈ B(x0, 3r0) ⊂ Ω. Summing up, for every open

set Ω, there exists
x∗ ∈ Ω ∩ (∩∞k=1Vk).

This proves that ∩∞k=1Vk is dense in X. This completes the proof of the following result:

Baire Category Theorem. The intersection of a sequence of dense open
sets in a complete metric space is dense in the space. In other words, if X
is a complete metric space and Vk are open dense subsets of X for all k ≥ 1,
then ∩∞k=1Vk is dense in X.

Let now Fn be closed subsets of a complete metric space. Prove that if the interior of
Fn is empty for all n, that is, F̊n = ∅, then ∪∞n=1Fn 6= X. (Hint. Use the Baire category
theorem with Vn := X \ Fn. You only need to use that ∩∞n=1Vn is not empty.)

Solution. Let Vn := X \ Fn, which is open since Fn is closed. Note that
Vn = X \ intFn, so the hypotheses on Fn imply that Vn is open and dense in X
for all n. Therefore, ∩nVn = X \ ∪nFn is non-empty. This proves the result.

Rephrased in a slightly different (while equivalent) way, we have proved the following
well-known consequence of the Baire Category Theorem.

Proposition. If X is a complete metric space and X = ∪∞n=1Fn with Fn
closed for all n, then there exists n such that F̊n 6= ∅.
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Work day — October 7 – MATH 806 (Fall 2015)

The Banach-Steinhaus Theorem

Today X and Y will be two generic Banach spaces. Let now Λ ∈ B(X;Y ). Prove the
inequality

‖Λx‖Y ≥ ‖Λx0‖Y − ‖Λ‖ ‖x− x0‖X ∀x, x0 ∈ X
and use it to show that for all C > 0 the set

SC := {x ∈ X : ‖Λx‖Y > C}

is open.

Solution. Since ‖Λ(x − x0)‖Y ≤ ‖Λ‖ ‖x − x0‖X (by definition of operator
norm), the inverse triangle inequality

‖Λx‖Y = ‖Λx0 + Λ(x− x0)‖Y
≥

∣∣∣‖Λx0‖Y − ‖Λ(x− x0)‖Y
∣∣∣ ≥ ‖Λx0‖Y − ‖Λ(x− x0)‖Y

≥ ‖Λx0‖Y − ‖Λ‖ ‖x− x0‖X

proves the inequality. If x0 ∈ SC , then ‖Λx0‖Y = C + ε with ε > 0. Let then
ρ := ε/(2‖Λ‖). If ‖x− x0‖X < ρ, then

‖Λx‖Y > C + ε− ‖Λ‖ρ = C + ε/2 > C,

which proves that B(x0; ρ) ⊂ SC and therefore SC is open.

Show that if there exists x0 ∈ X and ρ > 0 such that

SC ∩B(x0; ρ) = ∅, where B(x0; ρ) := {x ∈ X : ‖x− x0‖X < ρ}

then, using the inequality

‖Λx‖Y ≤ ‖Λx0‖Y + ‖Λ(x+ x0)‖Y ‖x‖X ≤ ρ,

we can prove that

‖Λ‖ ≤ 2C

ρ
.

Solution. By definition of SC and noting that SC ∩ B(x0; ρ) = ∅, it is clear
that ‖Λz‖Y ≤ C for all z ∈ B(x0; ρ). By continuity of Λ it is then clear that
‖Λz‖Y ≤ C if ‖z − x0‖X ≤ ρ. Therefore,

‖Λx‖Y = ‖Λ(x+ x0)− Λx0‖
≤ ‖Λx0‖Y + ‖Λ(x+ x0)‖Y ≤ 2C ‖x‖X ≤ ρ,

and scaling

‖Λx‖Y =
1

ρ
‖Λ(ρx)‖ ≤ 2C

ρ
if ‖x‖ = 1.
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Let now F ⊂ B(X;Y ) be an arbitrary collection of bounded linear operators from X to
Y . Show that

Vn := {x : ‖Λx‖Y > n for some Λ ∈ F}
is open.
(Hint. Write it as the union of open sets. )

Solution. We can write

Vn = ∪Λ∈F{x : ‖Λx‖Y > n}

and each of the sets in the right-hand side is open.

Show that if Vn is not dense in X, then

sup
Λ∈F
‖Λ‖ <∞.

(Hint. A ⊂ X is not dense in X if and only if there exists a ball B(x0; ρ) that does not
intersect A.) )

Solution. If Vn is not dense in X, there exists a ball B(x0; ρ) not intersecting
Vn. Therefore

{x : ‖Λx‖Y > n} ∩B(x0; ρ) = ∅ ∀Λ ∈ F

and by what we proved above

‖Λ‖ ≤ 2n

ρ
∀Λ ∈ F .

Use the previous arguments and Baire’s Theorem1 to prove the following result:

Banach-Steinhaus Theorem (a.k.a. Uniform Boundedness Principle)
If X and Y are Banach spaces and F ⊂ B(X;Y ), then either

sup
Λ∈F
‖Λ‖ <∞

or the set
{x ∈ X : sup

Λ∈F
‖Λx‖Y =∞}

is dense in X.

Solution. Note that

{x : sup
Λ∈F
‖Λx‖Y =∞} = ∩∞n=1{x : ‖Λx‖Y > n for some Λ ∈ F}

= ∩∞n=1Vn.

We have two options:

1The intersection of a sequence of dense open sets in a complete metric space is dense in the space.
In other words, if X is a complete metric space and Vn are open dense subsets of X for all n ≥ 1, then
∩∞n=1Vn is dense in X.
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(a) One of the sets Vn is not dense in X and, therefore, the set F is bounded
in B(X;Y ).

(b) All the sets Vn are dense in X. By Baire’s Theorem, the intersection of all
of them is dense in X.

Note that the following result is a partial statement of the Banach-Steinhaus Theorem

Let F ⊂ B(X;Y ), where X and Y are Banach spaces. If

sup
Λ∈F
‖Λx‖Y =: Cx <∞ ∀x ∈ X,

then the set F is bounded in the operator norm.

Prove the following corollary now (note that you need to prove linearity and boundedness):

Corollary. Let (Λn)n≥1 be a sequence in B(X;Y ), where X and Y are Banach
spaces. If the following limit exists

lim
n→∞

Λnx =: Λx ∀x ∈ X,

then Λ : X → Y is linear and bounded.

Solution. Let x, x′ ∈ X and α, β ∈ K. Then

Λ(αx+ βx′) = lim
n→∞

Λn(αx+ βx′)

= lim
n→∞

(αΛnx+ βΛnx
′)

= α lim
n→∞

Λnx+ β lim
n→∞

Λnx
′

= αΛx+ βΛx′,

since Λn is linear for all n. Consider now the set F := {Λn : n ≥ 1}. Since Λnx is
convergent, then ‖Λnx‖ ≤ Cx for all n and all x ∈ X. By the Banach-Steinhaus
theorem there exists C such that ‖Λn‖ ≤ C for all n. Since Λnx→ Λx, then

‖Λx‖ = lim
n→∞

‖Λnx‖ ≤ lim sup
n→∞

‖Λn‖ ‖x‖ ≤ C‖x‖,

which proves that Λ is bounded.

Note that the result does not make any claims on whether Λn → Λ (in the operator norm).
The result can be read as: the pointwise limit of a sequence of bounded linear operator
is a bounded linear operator.
To show the following result, identify x ∈ X with i x ∈ X∗∗, where

(i x)(φ) := φ(x) x ∈ X, φ ∈ X∗.
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Corollary. Let X be a Banach space and let xn ⇀ x. Then there exists C > 0
such that

‖xn‖ ≤ C ∀n.

In other words, weakly convergent sequences are bounded.

Solution. Weak convergence means that

φ(xn) −→ φ(x) ∀φ ∈ X∗,

or, equivalently,
(i xn)(φ) −→ (i x)(φ) ∀φ ∈ X∗.

We then apply the previous result with Λn := i xn : X∗ → K, to get ‖xn‖X =
‖i xn‖X∗∗ ≤ C for all n. This proves the result.
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