Your first day at work — MATH 806 (Fall 2015)

1. Let X be aset (with no particular algebraic structure). A functiond : X x X — R is
called a metric on X (and then X is called a metric space) when d satisfies the following
axioms:

A sequence (z,,) C X is said to converge to x € X when

Sequences in a metric space can only have one limit. The proof is based on this simple
inequality
d(z,z') < d(z,x,) + d(2', z,).

Finish it.

A sequence (x,,) is said to be a Cauchy sequence (we typically just say the the sequence
is Cauchy) when

Every convergent sequence is Cauchy. The proof is based on this simple inequality
d(xp, Tm) < d(Tp, ) + d(xpy, x).

Finish it.

When in a metric space X, every Cauchy sequence is convergent, we say that X is
complete.



2. Let now V be a vector space over R or C. A function || - || : V' — R is said to be a
norm when it satisfies the following axioms:

When a vector space is equipped with a norm, it is said to be a normed space. Given a
norm on a vector space V', we can easily define a metric/distance on V:

The metric brings along the concepts of convergent and Cauchy sequence. A normed
space that is complete is called a Banach space. Not every normed space is a Banach
space.

Remark. Not every metric space is a normed space. To begin with, a metric space does
not neet to have a vector structure, while a normed space does. Even on vector spaces,
a metric derived from a norm takes values in the entire [0, 00), while many metrics take
values in bounded intervals.

3. Consider now a vector space V and a function (-,-) : V' x V' — F where F =R or C,
depending on the field over which V' is defined. The bracket is called an inner product
when it satisfies the following axioms:

Given an inner product, we can define the associated norm as follows:



Given an inner product and its associated norm, the following inequality, known as the
Cauchy-Schwarz inequality, holds:

The proof in the real case is very simple. Fix u,v € V and consider the map
Rotr— (u+tv,u+tv) eR.

It is easy to show that this map is a quadratic polynomial with at most one zero. The
CS inequality follows from this simple argument. The proof for the complex case is
slightly more involved. Using the Cauchy-Schwarz inequality it is easy to prove that
every inner product space is a normed space, i.e., the associated norm is actually a norm.
We therefore have concepts of convergent and Cauchy sequences. An inner product space
that is complete is called a Hilbert space.

Remark. Not every inner product space is a normed space. The norm associated to an
inner product satisfies the paralelogram identity:

but not every norm satisfies this identity. Not every inner product space is a Hilbert
space.



Quiz # 1 — September 9 — MATH 806 (Fall 2015)

Your name:

1. (2 points) Define Banach space. (No formulas are needed for this definition.)

2. (2 points) Let H be an inner product space and let ||z|| = (x, z)'/? be the associated
norm. State the Cauchy-Schwarz inequality.

3. (3 points) Let X be a metric space. Give two equivalent definitions of what we
understand by a compact subset of X.

(Wait to be told before you start with the next page.)



4. (3 points) Let (X,d) be a metric space and let (x,),>1 be a Cauchy sequence in
X. Assume that there exists a convergent subsequence (x,, )r>1 (here (ng)g>; is an
increasing sequence of positive integers). Show that (x,),>1 converges.

(You can discuss Problem 4 with one classmate.
You are not allowed to go back to Questions 1-3)



Quiz # 2 — September 16 — MATH 806 (Fall 2015)

Your name:

1. (1 point) Define Hilbert space. (No formulas are needed for this definition.)

2. (1 point) Let H be an inner product space and ||z|| = (z,2)"?, where (-,-) is the
inner product in H. Write the Cauchy-Schwarz inequality.

3. (2 points) Let (z,),>1 be a convergent sequence in an inner product space H. If
r = lim,,_, x,, show that

(Tn,y) — (z,y) Vye€ H.

4. (3 points) Let H be a Hilbert space and M C H be a subspace. Show that the set
M+ ={zrcH: (xr,m)=0 ¥Yme M}

is a closed subspace of H.



5. (3 points) Define the spaces ¢* for 1 < p < oo and for p = co. Define their norms.

6. (2 points) Write down Minkowski’s inequality for sequences.

7. (3 points) Show that ¢# C (> for every p € [1,00). Find x € ¢*° such that x ¢ ¢?
for any p.



8. (5 points) Let K € L*(Q x Q) and consider the operator A : L*(Q) — L?*(2) given
by

(D@ = [ K(w.)f )y
Q
(Here € is an open set in R%.) Show that A is bounded and

A< K| z2@x0)-



Quiz # 3 — September 23 — MATH 806 (Fall 2015)

Your name:

1. (3 points) Let A : X — Y be a bounded linear operator between two normed spaces
X and Y. Give three different but equivalent definitions of the operator norm ||A]|.

2. (2 points) Let || - ||« and || - ||o be two norms defined in a vector space X. What do
we mean when we say that these norms are equivalent?

3. (2 points) The Cauchy-Schwarz inequality states that in an inner product space H,
(@) <zl lyll  Vo,y e H,

where (-, -) is the inner product and || - || the associated norm. Give necessary and
sufficient conditions on x and y so that the inequality is an equality.



4. (2 points) Show that in an inner product space H

Vr € H.

T,y
o = sup L&Y
0£ycH ||y||

Is the supremum a maximum?

5. (2 points) Find an element of ¢£* that is not in ¢'.

6. (2 points) Let g € L>(9), where © is an open set in R%. Consider the operator
LP(Q) > f— Af =g f e LP(Q),

where p € [1,00). Show that A is bounded and ||A|| < ||g||z~@). (Note that they
are actually equal, but I am not asking you for the proof of equality.)
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7. Let H be an infinite dimensional inner product space and let (¢,,),>1 be an orthonor-
mal sequence in H. Such a sequence can always be built using the Gram-Schmidt
method applied to a sequence of linearly independent elements of H. (Do no prove
this!)

(a) (2 points) Show that (¢,),>1 does not contain Cauchy subsequences.

(b) (1 points) Use (a) to give a direct proof that in an infinite dimensional inner
product space the unit ball is not compact.
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8. (3 points) Let (¢,)n>1 be an orthonormal sequence in a Hilbert space H. Bessel’s
inequality states that

o0

S iz, 6P < 2l vz e H.
n=1

Use this inequality to show that the series

o0

> (@, ¢n)n

n=1

converges in H for all z € H. (Hint. Show that the sequence of partial sums is
Cauchy.)
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Quiz # 4 — September 30 — MATH 806 (Fall 2015)

Your name:

1. (2 points) Let X be a normed space. Define its dual X* and the norm in X*.

2. (3 points) Let A : X — Y and B : Y — Z be bounded operators. Show that
BA:X — Z is bounded and

1B A| < [|B][[[All
Solution. For all z € X,
(B A)z|lz = |B(Az)||z < |B|[[[Az|ly < |B[l[|A]l [z x,

where we have used the boundedness inequalities for B and A. This implies
the boundedness of B A and the inequality || B A|| < || B| || A]l-

3. (3 points) Let X be a complex normed space and let V' be a subspace of X. What
does the extension theorem say? (Note that the full statement says two things about
the outcome.)

4. (3 points) Let M be a non-empty subset of an inner product space H. Show that
M+ ={zeH: (r,m)=0 VYme M}
is a closed subspace of H.
Solution. If z,y € M* and o, 3 € K, then
(ax+pPy,m)=a(x,m)+L(@y,m) =0  Vme M,
soar+ fye M. If (x,),>1 is a sequence in M+ and z = lim,, z,,, then
0= (xzp,m) — (x,m) Vm e M,
which proves that x € M*. Thus M* is closed.

5. (3 points) Let V' be a subspace of a normed space X. Prove that if 0 is an interior
point to V', then V' = X. (Hint. Build a ball around the origin.)

Solution. If 0 is an interior point to V, then there exists p such that
B(0,p) C V. Let 0 # x € X. Note that y = 5—x € B(0,p) C V and

2p]|]]
therefore = = 2p||z|jy € V.

6. (6 points) Let H be a Hilbert space and (¢,),>1 be an orthonormal sequence. Let
(an>n21 € 02,
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(a) Show that the elements
N
SN 1= Z O
n=1

define a Cauchy sequence in H. (Hint. Compute ||sy — sps]|> when M > N.)

Solution. Using the fact that (¢,),>1 is an orthonormal sequences

M 2 M
||SN - $M||2 = Z O‘n¢n = Z |a/n|2 =0pM —ON = |UM - 0N|>
n=N-+1 n=N+1

where oy = Zgil |, |? is the partial sum of the convergent series defin-
ing the square of the /% norm of (a,,),>1. This proves the result.

(b) Compute

|sn]|? and lim |[sn]|.
N—o00
Solution. Using the same argument
N
lsvll* = > lawl> — @)zl
n=1

(c¢) Use (a) and (b) to prove that the map

23 a= ()1 — Ta ::Zangbn cH

n=1

is an isometry from ¢? to H.

Solution. It is simple to prove that T is linear. We also know that for
all a € ¢2
Ta=limsy
N

and therefore || Tal|| = lim ||sy|| = ||| 2.
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Work day — October 5 — MATH 806 (Fall 2015)

The Baire Category Theorem

Let X be a complete metric space. We say that and V C X is dense in X when V = X
or, equivalently, when V' NQ # () for all non-empty open Q C X. Consider now a sequence
of open dense subsets (Vj)g>1 of X. Take © non-empty open and xy € Q. There exists
ro > 0 (which we can assume to satisfy ro < 1) such that

B(xg,3ry) :={r € X : d(x,z0) < 3ro} C Q.
For every k > 1, we can find x; € X and r; > 0 such that
B(xy,3ry) C Ve N B(ag_1,75-1).
Prove it.

Solution. The set V} is open and dense. Therefore Vi, N B(xk_1,7,_1) is non-
empty and we can find z;, € VN B(x;_1,71_1). The set is also open (intersection
of two open sets) and, therefore, we can find a ball centered in x; contained in
the set. We call the radius 3r}.

By construction we can make

7 1

Th_
rp <t < < <o

%S

Prove it.
Solution. We can take 3r,_; < rj in the k-th step.

Note that x, € B(xy_1,7,_1) for all k and therefore d(zy,1,7x) < 1/3%. With this it is
simple to show that the sequence (zy)r>1 is Cauchy. Prove it.

Solution. Foranyn >1

d(zg, Thgn) < d(@g, Thr1) + A @ps1, Thy2) + -+ A Thtn—1, Thtn)
1

3k

This shows that ()1 is Cauchy, since Y7 1 1/3% < .

< + +. 4+

3k+1 ’ 3k+n71'

Let z* be the limit of this sequence (X is complete). Then
d(x*, zp) < Zd(xj+1,wj) VEk.
j=k

Prove it.
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Solution. By the triangle inequality

dz*,zp) < d(zg,Tpi1) + ..+ d(@ren_1,Trin) + d(Tran, T7)

< Zd(xj+1,xj) + d(xpin, ) VN > 0.

J=k

Since we can make the last term in the sum as small as we want by taking NV
large enough, this proves the inequality.

This implies that
d(z*,xy) < ;rk vk,

and therefore z* € B(xy, 3r;) C V. Prove it.

Solution. Using the previous inequality and the bounds on the radii

o o
d(zg,x”) < Y d(wjen,r) < 1
j=k Jj=k
[e.¢]
r 2
< —IZ = 5Tk
=1

Note that we have show that there exists a point x* such that
z* € Ny Vi.

However, d(x*, z) < %ro and therefore xy € B(xg, 3r9) C 2. Summing up, for every open
set €2, there exists
This proves that M2, Vj is dense in X. This completes the proof of the following result:

Baire Category Theorem. The intersection of a sequence of dense open
sets in a complete metric space is dense in the space. In other words, if X
s a complete metric space and V), are open dense subsets of X for all k > 1,
then M2, Vi is dense in X.

Let now F}, be closed subsets 9f a complete metric space. Prove that if the interior of
F, is empty for all n, that is, F,, = (), then U2, F,, # X. (Hint. Use the Baire category
theorem with V,, := X \ F,,. You only need to use that N2V}, is not empty.)

g)lution. Let V,, := X \ F,, which is open since F, is closed. Note that
V, = X \ intF,, so the hypotheses on F}, imply that V,, is open and dense in X
for all n. Therefore, N, V,, = X \ U, F,, is non-empty. This proves the result.

Rephrased in a slightly different (while equivalent) way, we have proved the following
well-known consequence of the Baire Category Theorem.

Proposition. If X is a complete metric space and X = Uy, F, with I,
closed for all n, then there exists n such that F, # (.
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Work day — October 7 — MATH 806 (Fall 2015)

The Banach-Steinhaus Theorem

Today X and Y will be two generic Banach spaces. Let now A € B(X;Y). Prove the
inequality
[Azlly = [|Azolly — Al lz = zollx  Va,20 € X

and use it to show that for all C' > 0 the set
Se:={rzeX : ||Az|y > C}
is open.

Solution. Since ||A(x — zo)|ly < ||A]l ||z — zo||x (by definition of operator
norm), the inverse triangle inequality

Azlly = ||[Azo+ Alz — o)y
> |[[Azolly — Az — 20)|ly| = [[Aolly — [[A(x — o)y
> |Azolly — |All |7 — 2ol x

\%

proves the inequality. If zo € S, then ||Axzg|ly = C + € with € > 0. Let then
p:=¢c/(2||Al]). If ||z — zol|x < p, then

|Az|ly > C+e—||Allp=C+¢/2>C,
which proves that B(xg; p) C Sc and therefore S¢ is open.
Show that if there exists o € X and p > 0 such that
Sc N B(xg; p) = 0, where B(zo;p) :={r € X : |z — xo||x < p}
then, using the inequality
[Azly < [[Azolly + |A(z +zo)lly  [lz]lx <p,

we can prove that

1A < €.
p

Solution. By definition of S¢ and noting that Sc N B(xg; p) = 0, it is clear
that ||Az|ly < C for all z € B(xg;p). By continuity of A it is then clear that
IAz]|ly < Cif ||z — xo||x < p. Therefore,

[Azlly = [[A(z + z0) — Aol
< JAzolly + |Az +2o)lly <2C lz]lx < p,

and scaling

1 20 .
[Az|ly = ;IIA(px)II s if ||zf] = 1.
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Let now F C B(X;Y) be an arbitrary collection of bounded linear operators from X to
Y. Show that

Vi :={z : |Az|ly >n for some A € F}

is open.
(Hint. Write it as the union of open sets. )

Solution. We can write
Vi = Uner{z : ||Az]ly > n}
and each of the sets in the right-hand side is open.
Show that if V,, is not dense in X, then
sup ||A|| < 0.
AeF
(Hint. A C X is not dense in X if and only if there exists a ball B(xg; p) that does not
intersect A.) )

Solution. If V,, is not dense in X, there exists a ball B(zg; p) not intersecting
V... Therefore

{z : ||Az|ly >n} N B(xy;p) =0 VA e F

and by what we proved above

2
1A < 7" VA € F.

Use the previous arguments and Baire’s Theorem! to prove the following result:

Banach-Steinhaus Theorem (a.k.a. Uniform Boundedness Principle)
If X and Y are Banach spaces and F C B(X;Y), then either

sup [[Af] < oo

AEF
or the set

{z € X : sup||Az|ly = oo}
AEF
1s dense in X.
Solution. Note that
{z : sup ||[Az|ly =0} = N2 {x : [[Az|ly >n for some A € F}
AEF
= N2, V.

We have two options:

IThe intersection of a sequence of dense open sets in a complete metric space is dense in the space.
In other words, if X is a complete metric space and V,, are open dense subsets of X for all n > 1, then
Mooy Vp, is dense in X.
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(a) One of the sets V,, is not dense in X and, therefore, the set F is bounded
in B(X;Y).

(b) All the sets V,, are dense in X. By Baire's Theorem, the intersection of all
of them is dense in X.

Note that the following result is a partial statement of the Banach-Steinhaus Theorem

Let F C B(X;Y), where X and Y are Banach spaces. If

sup ||[Az|ly =: Cp < Vo e X,
AeF

then the set F 1is bounded in the operator norm.
Prove the following corollary now (note that you need to prove linearity and boundedness):

Corollary. Let (A,)n>1 be a sequence in B(X;Y'), where X andY are Banach
spaces. If the following limit exists

lim A,z =: Ax Ve e X,

n—oo

then A : X — Y s linear and bounded.

Solution. Let z,2' € X and o, € K. Then

Aoz + p2') = lim A, (az + B2')
n—oo
= lim (aA,x + SAZ)
n—oo
= o lim A,z + B lim A2’

n—oo n—oo

= alz + A,
since A, is linear for all n. Consider now the set F := {A,, : n > 1}. Since A,z is
convergent, then ||A,z| < C, for all n and all x € X. By the Banach-Steinhaus
theorem there exists C' such that ||A,,|| < C for all n. Since A,z — Az, then

[Az]| = Tim [|Anz]] < limsup [[Aq ]| f|z]] < Cl,
n—00 n—00
which proves that A is bounded.
Note that the result does not make any claims on whether A,, — A (in the operator norm).
The result can be read as: the pointwise limit of a sequence of bounded linear operator
is a bounded linear operator.
To show the following result, identify x € X with i x € X™**, where

(12)(9) == ¢o(x) reX, ¢eX
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Corollary. Let X be a Banach space and let x,, — x. Then there exists C' > 0
such that
lzn] < C vn.

In other words, weakly convergent sequences are bounded.

Solution. Weak convergence means that
o(x,) — o(x) Vo € X7,

or, equivalently,
(izn)(@) — (ix)(¢) Vo e X7

We then apply the previous result with A, := iz, : X* — K, to get ||z,||x =
li 2 || x+« < C for all n. This proves the result.
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