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MATH 835: Evolutionary Partial Differential Equations

Fall’12 (F.–J. Sayas) A variant of the Weierstrass M-test

Theorem. Let Ω ⊂ Rn be an open set and let fm : Ω→ R be functions satisfying:

(a) fm are continuous for all m

(b) there exists constants Mm such that

|fm(x)| ≤Mm ∀x ∈ Ω with
∞∑
m=1

Mm <∞.

Then the series

f(x) =

∞∑
m=1

fm(x)

converges uniformly in Ω to a continuous function.

Some comments.

1. Properly speaking, the Weierstrass M-test deals with functions fm : Ω→ R defined on any
set Ω (it does not need to be an open set in Rn). Assuming condition (b), this result says
that the series

f(x) =
∞∑
m=1

fm(x)

converges uniformly. Uniform convergence means: for all ε > 0 there exists M0 such that

|f(x)−
M∑
m=1

fm(x)| ≤ ε ∀M ≥M0, ∀x ∈ Ω.

(The qualifier uniform makes reference to the fact that M0 does not depend on x.) You
can find a simple proof of this result in the Wikipedia for instance.

http://en.wikipedia.org/wiki/Weierstrass_M-test

2. There is a second part to this result. If a sequence of continuous functions converges uni-
formly, then the limit is also continuous. This is often called the Uniform Limit Theorem.
This part of the result is more restrictive in where the theorem is stated. For the sake of
what we need, an open set in Rn will do (but any topological space works too). Note that
a result that applies to convergence of sequences, applies to convergence of series, since
convergence of the series

∑∞
m=1 fm is defined as convergence of the sequence of partial

sums:

sM :=
M∑
m=1

fm.

The very simple proof of this result, can also be found in the Wikipedia

http://en.wikipedia.org/wiki/Uniform_limit_theorem
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MATH 835: Evolutionary Partial Differential Equations

Fall’12 (F.–J. Sayas) Term by term differentiation of series

Theorem. Let Ω ⊂ Rn be an open set and let x be one of the components of the vector
variable x ∈ Ω. Assume that the functions fm : Ω→ R satisfy:

(a) fm and ∂xfm are continuous for all m,

(b) there exist constants Mm such that

|fm(x)| ≤Mm ∀x ∈ Ω with
∞∑
m=1

Mm <∞

(c) there exist constants M̃m such that

|∂xfm(x)| ≤ M̃m ∀x ∈ Ω with

∞∑
m=1

M̃m <∞.

Let finally

f(x) =
∞∑
m=1

fm(x).

Then ∂xf is well defined in Ω, it is continuous, and

∂xfm(x) =

∞∑
m=1

∂xfm(x) ∀x ∈ Ω.

Some notes. Most of this misleadingly long statement is a direct application of the Weierstrass
M-test and the Uniform Limit Theorem (see the previous page). With those results at hand, we
know that the series

f(x) =
∞∑
m=1

fm(x) and g(x) =
∞∑
m=1

∂xfm(x)

converge uniformly to continuous functions. The only detail that’s left is showing that ∂xf = g.
Since the definition of partial derivative is purely one-dimensional (to define a partial derivative
with respect to a variable, all other variables are frozen), we only need to prove the result for
functions of one variable, that is, for functions fm of only one variable, we want to prove that

lim
M→∞

( M∑
m=1

f ′m(t)
)

=
d

dt

( ∞∑
m=1

fm(t)
)
.

Fixing the value of t, what we have to do is showing that
∞∑
m=1

(
lim
h→0

fm(t+ h)− fm(t)

h

)
= lim

h→0

( ∞∑
m=1

fm(t+ h)− fm(t)

h

)
,

which is, once more, a consequence of the M-test, applied now to the functions

gm(h) :=

{
1
h(fm(t+ h)− fm(t)), h 6= 0,
f ′m(t), h = 0.
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MATH 835: Evolutionary Partial Differential Equations

Fall’12 (F.–J. Sayas) Differentiation under integral sign

Theorem. Let f : Ω × (0, T ) → R be continuous and differentiable in the last variable and
assume that

|f(x, t)|+ |ft(x, t)| ≤ g(x) ∀x ∈ Ω,∀t ∈ (0, T ),

where ∫
Ω
g(x)dx <∞.

Then
d

dt

∫
Ω
f(x, t) dx =

∫
Ω
ft(x, t) dx.
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MATH 835: Evolutionary Partial Differential Equations

Fall’12 (F.–J. Sayas) Parseval’s Identity

There are many different forms of Parseval’s Identity. The most usual one is related to the full
(sines and cosines) real Fourier series. Given f : (−L,L)→ R, such that∫ L

−L
|f(x)|2 dx, (1)

we define its Fourier coefficients

am :=
1

L

∫ L

−L
f(x) cos(mπ x)dx m ≥ 0,

bm :=
1

L

∫ L

−L
f(x) sin(mπ x)dx m ≥ 1.

Then, Parseval’s Identity asserts that

a2
0

2
+

∞∑
m=1

(a2
m + b2m) =

1

L

∫ L

−L
|f(x)|2dx.

The Fourier series of a square integrable function (a function satisfying (1)) converges in square
mean:

lim
M→∞

∫ L

−L

∣∣∣a0

2
+

M∑
m=1

(am cos(mπ x) + bm sin(mπ x)− f(x)
∣∣∣2dx = 0.

Cosine series. Foruier cosine series are (in a way) a particular case of Fourier series. We start
by considering a function g : (0, L)→ R such that∫ L

0
|g(x)|2dx. (2)

We definer its even extension feven : (−L,L)→ R

feven(x) :=

{
g(x), x ≥ 0,
g(−x), x < 0.

The Fourier coefficients of feven can be written in terms of g as follows

am =
2

L

∫ L

0
g(x) sin(mπ x)dx, bm = 0,

(the coefficients am are the cosine Fourier coefficients of g) and Parseval’s Identity becomes

a2
0

2
+
∞∑
m=1

a2
m =

2

L

∫ L

0
|g(x)|2dx.
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Sine series. If we start again if g : (0, L)→ R satisfying (2), and create its odd extension

fodd(x) :=

{
g(x), x ≥ 0,
−g(−x), x < 0,

the Fourier coefficients are now

am = 0, bm =
2

L

∫ L

0
g(x) sin(mπ x)dx

(the bm coefficients are the sine Fourier coefficients of g), and Parseval’s Identity is

∞∑
m=1

b2m =
2

L

∫ L

0
|g(x)|2dx.

For more about Fourier series, read Appendix A of the textbook.
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MATH 835: Evolutionary Partial Differential Equations

Fall’12 (F.–J. Sayas) The divergence theorem in several forms and shapes

Let us assume that the bounded open domain Ω ⊂ Rn is such that we can define the outer normal
vector field ν almost everywhere on its boundary ∂Ω and we can integrate on this boundary.
Notation for integration will be the same as in the textbook, namely∫

Ω
f dx

is a Lebesgue (volume) integral of the function f (the variable is not made explicit) and dx is
just the Lebesgue measure. For integrals on ∂Ω, we will write∫

∂Ω
f dσ.

The simplest version of the divergence theorem says that if p : Ω→ Rn is C1(Ω) component by
component, then ∫

Ω
div p dx =

∫
∂Ω

p · ν dσ. (3)

If we apply this result to a vector field p = uq, where u ∈ C1(Ω), q ∈ C1(Ω)n, we obtain another
popular form of the result∫

Ω
udiv q dx +

∫
Ω
∇u · q dx =

∫
∂Ω
uq · ν dσ. (4)

If we take u ≡ 1 and q = p in (4), we obtain (3). If we take q = ∇v (with v ∈ C2(Ω), then we
obtain a third form of the divergence theorem (often called Green’s First identity)∫

Ω
u∆v dx +

∫
Ω
∇u · ∇v dx =

∫
∂Ω
u ∂νv dσ. (5)
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