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1 Cut-off functions

Prerequesites and notes. Definition of support of a continuous function and of the set

D(Ω), of C∞ compactly supported functions. The material of this section is standard, there’s

really nothing new to it.

Radially symmetric bumps. Consider the function

g(r) :=

{
e

1
r2−1 , |r| < 1,

0, |r| ≥ 1.
(1)

Then
g ∈ C∞(R), supp g = [−1, 1], g ≥ 0.

Therefore, the function ϕ : Rd → R

ϕ(x) := g(|x|) (2)

satisfies
ϕ ∈ D(Rd), suppϕ = B(0; 1), ϕ ≥ 0.

With translations and dilations we can thus construct non-ngeative functions in D(Rd)
with support on B(x0; ρ) for all x0 ∈ Rd and ρ > 0.

Approximations of the Dirac delta. Let

ψ ∈ D(Rd), ψ ≥ 0, suppψ = B(0; 1),

∫
Rd

ψ(x)dx = 1. (3)

Such a function can be easily constructed by dividing the function ϕ in (2) by its norm.
We can then define

ψε(x) := 1
εd
ψ
(

1
ε
x
)

ε > 0. (4)
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Then

ψε ∈ D(Rd), ψε ≥ 0, suppψε = B(0; ε),

∫
Rd

ψε(x)dx = 1.

Before thinking of distributions, it is simple to see that if f ∈ C(R), then

lim
ε→0

∫
Rd

ψε(y)f(x− y)dy = f(x) ∀x ∈ Rd.

A smooth Heaviside function. Let g be the function defined in (1). Define then

h(r) :=
1∫∞

−∞ g(2t− 1)dt

∫ r

−∞
g(2t− 1)dt. (5)

Then
h ∈ C∞(R), 0 ≤ h ≤ 1, h′ ≥ 0, (6a)

and
h ≡ 0 in (−∞, 0], h ≡ 1 in [1,∞). (6b)

Radially symmetric cut-off functions. Consider the function h defined in (5) (or,
for the same price, any function satisfying (6)). Then, the function

ϕ(x) := h

(
R2 − |x− x0|
R2 −R1

)
, x0 ∈ Rd, 0 < R1 < R2,

satisfies

ϕ ∈ D(Rd), suppϕ = B(x0;R2) ϕ ≡ 1 in B(x0;R1), 0 ≤ ϕ ≤ 1.

Cut-off functions on cubes. Consider now two concentric parallelepideds

Q := [−m1,m1]× . . .× [−md,md] Qext := [−M1,M1]× . . .× [−Md,Md],

where
0 < mj < Mj ∀j.

Then, the function

ϕ(x) :=
d∏
j=1

h

(
Mj − xj
Mj −mj

)
satisfies

ϕ ∈ D(Rd), suppϕ = Qext, ϕ ≡ 1 in Q, 0 ≤ ϕ ≤ 1.

Once again, we can change the center of the set Q to get new functions centered at
arbitrary points in Rd.
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2 Lattice partitions of unity

Prerequesites and notes. Section 1 of this document. Theorem 2 is a simplified version

of Theorem 1.4.4. in Hörmander [1].

A smooth tiling of the space. Let us start by considering a basic configuration of
two concentric d−cubes

Q0 := (−1
2
, 1

2
)d Qδ

0 := (−1
2
− δ, 1

2
+ δ)d

and a function

ϕ0 ∈ D(Rd), suppϕ0 = Qδ
0, ϕ0 ≡ 1 in Qδ, 0 ≤ ϕ0 ≤ 1.

Consider then the cubes

Qn := n +Q0 =
d∏
j=1

(nj − 1
2
, nj + 1

2
), Qδ

n := n +Qδ
0, n ∈ Zd,

and the functions
ϕn := ϕ(· − n).

The sum of all these functions
s :=

∑
n∈Zd

ϕn

satisfies
s ∈ C∞(Rd), s > 0, s is 1-periodic in all variables.

We finally get to our goal functions:

ψn := s−1ϕn ∈ D(Rd), 0 ≤ ψn ≤ 1, suppψn = Qδ
n,

∑
n∈Zd

ψn ≡ 1.

By taking δ small enough, we can enforce ψn to be identically equal to one in a neighbor-
hood of n.

Theorem 1 (Smooth separation from the boundary). Let Ω be an open set and ε > 0.
Then, there exists

ϕ ∈ D(Ω), s.t. ϕ ≡ 1 in Ωε := {x ∈ Ω : dist (x, ∂Ω) > ε}.

Proof. Let `ε := ε/(2
√
d) and consider the cubes

Qn := `εn + (−1
2
`ε,

1
2
`ε)

d ⊂ Qext
n := `εn + (−2

3
`ε,

2
3
`ε)

d, n ∈ Zd.

A simple change of scale in the previous construction allows us to get

ψn ∈ D(Rd) suppψn ⊂ Qext
n ,

∑
n∈Zd

ψn ≡ 1.
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(note that we are asking for ψn to be supported inside Qext
n , which can be easily accom-

plished by choosing δ small enough in the previous construction.) Consider now the finite
set of indices

I := {n ∈ Zd : Qext
n ∩ Ωε 6= ∅}

and the function
ϕ :=

∑
n∈I

ψn ∈ D(Rd).

What is left is just a collection of easy observations.

(a) If x ∈ Ωε, then B(x; ε) ⊂ Ω.

(b) The diameter of Qext
n is

√
d 4

3
`ε = 2

3
ε. Therefore, if n ∈ I, we can take x ∈ Qext

n ∩Ωε

and note that

y ∈ Qext
n =⇒ |y − x| < 2

3
ε =⇒ y ∈ B(x; ε) ⊂ Ω.

(c) As a consequence,

suppϕ ⊂
⋃
n∈I

Qext
n ⊂ Ω.

(d) Finally, if x ∈ Ωε, then ψn(x) = 0 for all n 6∈ I and thus

ϕ(x) =
∑
n∈I

ψn(x) =
∑
n∈Zd

ψn(x) = 1.

This finishes the proof.

Theorem 2 (Break down of test functions into cubic lattices). Let Ω be any open set and
φ ∈ D(Ω). Then, there exist cubes Qj and φj ∈ D(Ω) with

φ =
N∑
j=1

φj, suppφj ⊂ Qj ⊂ Ω.

Proof. The proof uses the construction of the previous proof. We start by defining ε :=
1
2
dist(suppφ, ∂Ω) so that suppφ ⊂ Ωε (see Theorem 1). Then we have a finite set of

indices I, cubes {Qn : n ∈ I}, and smooth functions

ψn ∈ D(Rd), suppψn ⊂ Ω,
∑
n∈I

ψn ≡ 1 in Ωε.

Therefore
φ = φ

∑
n∈I

ψn =
∑
n∈I

(φψn),

and the result follows by taking ϕn := φϕn and renumbering the set I.
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3 When the gradient of a distribution vanishes

Prerequesites and notes. Sections 1 and 2 of this document. Concept of distribution and

differentiation of distributions. The proof of the one-dimensional version of the theorem can be

found in any classic textbook. The d−dimensional case is more involved. The proof I’m giving

below is distilled from Hörmander’s first volume [1]. In particular Proposition 4 below follows

[1, Theorem 3.1.4’].

Goal. The aim of this section is the proof of the following important result:

If Ω ⊂ Rd is an open connected set, then

T ∈ D′(Ω), ∇T = 0 =⇒ T = c,

i.e., if the partial derivatives of a distribution vanish, then there exists a constant c
such that

〈T, ϕ〉 = c

∫
Ω

ϕ(x)dx ∀ϕ ∈ D(Ω).

We will proceed as follows: prove it in one dimension, prove it for cubes, use a tiling
argument to prove it for all domains.

Proposition 3. If T ∈ D′(a, b) and T ′ = 0, there exists c ∈ R such that

〈T, ϕ〉 = c

∫ b

a

ϕ(x)dx ∀ϕ ∈ D(a, b).

Proof. This results from a very well known argument, that can be found in any basic
textbook. Take first

ϕ0 ∈ D(a, b)

∫ b

a

ϕ0(t)dt = 1.

Given ϕ ∈ D(a, b), it then follows that

ϕ(t) = ϕ(t)−
(∫ b

a

ϕ(τ)dτ

)
ϕ0(t) +

(∫ b

a

ϕ(τ)dτ

)
ϕ0(t)

=
d

dt

∫ t

a

(
ϕ(τ)−

(∫ b

a

ϕ(ρ)dρ
)
ϕ0(τ)

)
dτ +

(∫ b

a

ϕ(τ)dτ

)
ϕ0(t)

= ψ′(t) +

(∫ b

a

ϕ(τ)dτ

)
ϕ0(t), ψ ∈ D(a, b).

Therefore

〈T, ϕ〉 = 〈T, ψ′〉+

∫ b

a

ϕ(t)dt 〈T, ϕ0〉 = −〈T ′, ψ〉+ 〈T, ϕ0〉
∫ b

a

ϕ(t)dt,

and the result follows by taking c := 〈T, ϕ0〉.
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Proposition 4. Let Q := (a1, b1)× . . .× (ad, bd). If

〈∂xjT, φ〉 = 0 ∀φ ∈ D(Q), ∀j,

then there exists c ∈ R such that

〈T, φ〉 = c

∫
Q

φ(x)dx ∀φ ∈ D(Q).

Proof. The result is proved by induction on d. We have already proved it for d = 1. Let
Q̃ := (a1, b1)× . . .× (ad−1, bd−1).

We start with

ϕ0 ∈ D(ad, bd)

∫ bd

ad

φ0(t)dt = 1

and consider T̃ : D(Q̃)→ R given by

〈T̃ , ϕ̃〉 := 〈T, ϕ̃⊗ ϕ0〉,

where
(ϕ̃⊗ ϕ0)(x) = ϕ̃(x̃)ϕ0(xd) x = (x̃, xd) ∈ Q = Q̃× (ad, bd).

It is very easy to prove that T̃ ∈ D′(Q̃) and that for 0 ≤ j ≤ d− 1

〈∂xj T̃ , ϕ̃〉 = −〈T̃ , ∂xj ϕ̃〉
= −〈T, ∂xj ϕ̃⊗ ϕ0〉
= −〈T, ∂xj(ϕ̃⊗ ϕ0)〉
= 〈∂xiT, ϕ̃⊗ ϕ0〉 = 0, ∀ϕ̃ ∈ D(Q̃)

and therefore there exists a constant c such that T̃ = c. On the other hand, if we associate

ϕ ∈ D(Q) 7−→ ϕ̃ :=

∫ bd

ad

ϕ(·, t)dt ∈ D(Q̃)

and decompose (see the proof of Proposition 3, where ϕ̃ is just a value)

ϕ = ϕ− ϕ̃⊗ ϕ0 + ϕ̃⊗ ϕ0 = ∂xdψ + ϕ̃⊗ ϕ0,

where

ψ(x) = ψ(x̃, xd) :=

∫ xd

ad

(
ϕ(x̃, t)− ϕ̃(x̃)ϕ0(t)

)
dt, ψ ∈ D(Q),

we show that

〈T, ϕ〉 = 〈T, ∂xdψ〉+ 〈T, ϕ̃⊗ ϕ0〉 = −〈∂xdT, ψ〉+ 〈T, ϕ̃⊗ ϕ0〉 = 〈T̃ , ϕ̃〉

= c

∫
Q̃

ϕ̃(x̃)dx̃ = c

∫
Q

ϕ(x)dx

and the proof is finished.
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Proposition 5. Let Ω be open and connected and let T ∈ D′(Ω) satisfy ∇T = 0. Then
there exists c ∈ R such that

〈T, ϕ〉 = c

∫
Ω

ϕ(x)dx ∀ϕ ∈ D(Ω), suppϕ ⊂ Q,

where Q is any cube contained in Ω and c does not depend on Q.

Proof. Proposition 4 shows that for all Q there exists cQ such that

〈T, ϕ〉 = cQ

∫
Ω

ϕ(x)dx ∀ϕ ∈ D(Ω), suppϕ ⊂ Q.

If Q1 ∩Q2 6= ∅, we choose

φ ∈ D(Q1 ∩Q2)

∫
Ω

φ(x)dx = 1

and then note that

cQ1 = cQ1

∫
Ω

φ(x)dx = 〈T, φ〉 = cQ2 .

Let now Qa and Qb be any two non-intersecting cubes in Ω. We can find a finite sequence
of cubes

Qa = Q1, Q2, . . . , QN = Qb, Qj ∩Qj+1 6= ∅, Qj ⊂ Ω.

(This is done by a connection and compactness argument. We join the center of the
cubes with a continuous arc, associate a cube to each point of the arc, and choose a
finite subcover of the arc using compactness.) The previous argument shows then that
cQj

= cQj+1
and therefore cQa = cQb

.

Theorem 6. Let Ω be open and connected and assume that T ∈ D′(Ω) satisfies

∂xjT = 0 1 ≤ j ≤ d.

Then T = c.

Proof. This is an easy consequence of Proposition 5 and the decompositions of Proposition
2. Given φ ∈ D(Ω) we can write

φ =
N∑
j=1

φj, φj ∈ D(Qj) Qj ⊂ Ω,

where Qj are cubes. We then use Proposition 5 to show that

〈T, φ〉 =
∑
j

〈T, φj〉 =
∑
j

c

∫
Ω

φj = c

∫
Ω

φ,

which proves the result.
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4 A guided tour of mollification techniques

Prerequesites and notes. The functions of Section 1 and basic notions of differentiation

of distributions. Only hints for the quite easy proofs of this section are given.

Proposition 7. Let ϕ ∈ D(Rd) and u ∈ L1
loc(Rd) and let

(u ∗ ϕ)(x) :=

∫
Rd

ϕ(x− y)u(y)dy.

Then:
u ∗ ϕ ∈ C(Rd) and ∂xi(u ∗ ϕ) = u ∗ ∂xiϕ.

Therefore u ∗ ϕ ∈ C∞(Rd). Additionally,

suppϕ ⊂ B(0; ε) and u ≡ 0 in B(x; 2ε) =⇒ u ∗ ϕ ≡ 0 in B(x; ε).

Proof. Assume that suppϕ ⊂ B(0;Rϕ). Then

(u ∗ ϕ)(x) =

∫
B(x;Rϕ)

ϕ(x− y)u(y)dy =

∫
B(0;R+Rϕ)

ϕ(x− y)u(y)dy x ∈ B(0;R).

Note that u ∈ L1(B(0;R + Rϕ)). With this at hand, it is easy to prove that u ∗ ϕ is
continuous at any point of the ball B(0;R + Rϕ). Differentiability can also be shown to
hold under integral sign. The last property is easy to verify.

Proposition 8. Let

ϕ ∈ D(Rd), ϕ ≥ 0,

∫
Rd

ϕ(x)dx = 1.

If u ∈ L2(Rd), then u ∗ ϕ ∈ L2(Rd) and

‖u ∗ ϕ‖Rd ≤ ‖u‖Rd .

Proof. The following inequalities are easy to justify:∫
Rd

∣∣∣ ∫
Rd

ϕ(y)u(x− y)dy
∣∣∣2dx ≤

∫
Rd

(∫
Rd

ϕ(z)dz

)(∫
Rd

ϕ(y)|u(x− y)|2dy

)
dx

=

∫
Rd

ϕ(y)

(∫
Rd

|u(x− y)|2dx

)
dy.

The result then follows readily.

Proposition 9. Let

ϕ ∈ D(Rd), ϕ ≥ 0,

∫
Rd

ϕ(x)dx = 1.

If u ∈ H1(Rd), then
∂xi(u ∗ ϕ) = (∂xiu) ∗ ϕ.

Therefore u ∗ ϕ ∈ H1(Rd).
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Proof. By Proposition 7, in the classical way ∂xi(u ∗ ϕ) = u ∗ ∂xiϕ. Fix now x ∈ Rd,
consider the function ϕx := ϕ(x− ·) ∈ D(Rd) and note that

(∂xiϕ)(x− · ) = −∂xiϕx.

Then

(u ∗ ∂xiϕ)(x) =

∫
Rd

u(y)(∂xiϕ)(x− y)dy = −
∫
Rd

u(y) ∂xiϕx(y)dy

= −〈u, ∂xiϕx〉 = 〈∂xiu, ϕx〉 =

∫
Rd

(∂xiu)(y)ϕx(y)dy

=

∫
Rd

(∂xiu)(y)ϕ(x− y)dy = (∂xiu ∗ ϕ)(x).

By Proposition 8, it follows that ∂xi(u ∗ ϕ) ∈ L2(Rd).

Lemma 10 (Translations are continuous in L2). For all u ∈ L2(Rd)

u(· − h)
|h|→0−→ u in L2(Rd).

Proof. Let ϕ ∈ D(Rd). It is then easy to show that ϕ(·−h)→ ϕ uniformly and therefore
in L2(Rd). For general u, we bound

‖u(· − h)− u‖Rd ≤ ‖u(· − h)− ϕ(· − h)‖+ ‖ϕ(· − h)− ϕ‖Rd + ‖ϕ− u‖Rd

= 2‖u− ϕ‖Rd + ‖ϕ(· − h)− ϕ‖Rd .

We next notice that the variational lemma implies that

D(Rd)⊥ = {u ∈ L2(Rd) : (u, ϕ)Rd = 0 ∀ϕ ∈ D(Rd)} = {0}

and therefore D(Rd) is dense in L2(Rd). The proof then follows readily.

Proposition 11. Let

ϕ ∈ D(Rd), 0 ≤ ϕ ≤ 1,

∫
Rd

ϕ(x)dx = 1

and consider the functions

ϕε := 1
εd
ϕ
(

1
ε
·
)

Then
u ∗ ϕε

ε→0−→ u in L2(Rd).

Proof. Consider the function ω(·;u) : Rd → [0,∞) defined by

ω(h;u) :=

∫
Rd

|u(x− h)− u(x)|2dx.

Note that ω(·;u) is continuous at zero by Lemma 10. Also

ω(h;u) = ω(h− ĥ;u(·+ ĥ)) ∀h, ĥ ∈ Rd,
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and therefore ω(·;u) ∈ C(Rd).
Writing

(u ∗ ϕε)(x)− u(x) =

∫
Rd

ϕ(z)(u(x− ε z)− u(x))dz,

we can easily bound

‖u ∗ ϕε − u‖2
Rd ≤

∫
Rd

(∫
Rd

ϕ(z)dz

)(∫
Rd

ϕ(z)|u(x− εz)− u(x)|2dz

)
dx

=

∫
Rd

ϕ(z)ω(εz;u)dz,

and using the continuity of ω(·;u) we can take the limit and finish the proof.

5 Sobolev spaces and Lipschitz transformations

Prerequesites and notes. Basic understanding of the distributional definition of H1(Ω).

The density of D(Rd) in H1(Rd) will be used. Some basic tools on partitions of unity, such as

the results of Section 1. The definition of support of an integrable function is also implicit to

one of the arguments. I am not entirely sure where I took the ideas for this proof.

The aim of this very technical section is the proof of just one result that will allow
us to apply Lipschitz change of variables in H1 spaces. We start with a bijective map
between two open sets

F : Ω→ O F−1 : O → Ω.

We assume that F and F−1 are Lipschitz. Therefore, there exist two constants such that

C1|x1 − x2| ≤ |F (x1)− F (x2)| ≤ C2|x1 − x2| ∀x1,x2 ∈ Ω.

In particular, F and F−1 are differentiable almost everywhere and their partial derivatives
are bounded functions. For the reader who is not comfortable with Lipschitz maps,
it suffices to think of a continuous piecewise C1 map, where the gradients have jump
discontinuities in the boundaries of a simple partition of the set. Throughout this section,
we will employ the symbol for the gradient vector to provide a row vector with the partial
derivatives of a function. On the other hand ∂xjF will be considered as a column vector
and DF will be the matrix whose columns are the vectors ∂xjF .

The remainder of this section is devoted to proving, step by step, the following result

Let u ∈ H1(O) and F : Ω→ O a Lipschitz bijection with Lipschitz inverse. Then

∂xj(u ◦ F ) = (∇u ◦ F )∂xjF ∀j.

As a consequence u ◦ F ∈ H1(Ω).

Without any further reference to these facts, we will assume that the bounded open
sets Ω and O and the Lipschitz map F are the ones of the statement.
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Lemma 12. Let O be bounded. Assume that u ∈ H1(O) vanishes in a neighborhood of
∂O. Then the function

ũ :=

{
u in O
0 in Rd \ O

is in H1(Rd) and ∇ũ = ∇̃u.

Proof. It is clear that ũ ∈ L2(Rd) and that the result is proved if we show that

∂xj ũ = ∂̃xju ∀j.

(The distributional derivative in the left-hand side is taken in Rd, while the one in the
righ-hand side is taken in O.)

Using the techniques of Section 1 we can build φ ∈ D(Ω) such that uφ ≡ u and
φ ∂xj u ≡ u, i.e., φ ≡ 1 where u 6= 0. Let then ϕ ∈ D(Rd) and note that

〈∂xj ũ, ϕ〉 = −〈ũ, ∂xjϕ〉 (definition of derivative)

= −
∫
Rd

ũ ∂xiϕ = −
∫

Ω

u ∂xjϕ (ũ is regular)

= −
∫

Ω

uφ ∂xjϕ (uφ = u)

= −
∫

Ω

u∂xj(φϕ) +

∫
Ω

u (∂xjφ)ϕ

= −〈u, ∂xj(φϕ)〉D′(Ω)×D(Ω) (u ∂xjφ ≡ 0, φϕ ∈ D(Ω))

= 〈∂xju, φϕ〉D′(Ω)×D(Ω) (definition of derivative)

=

∫
Ω

(∂xju)φϕ (∂xju is regular)

=

∫
Ω

(∂xju)ϕ (φ ∂xju ≡ ∂xju)

=

∫
Rd

∂̃xjuϕ = 〈∂̃xju, ϕ〉. (∂̃xju is regular)

This finishes the proof.

Let us introduce the set of functions of H1(O) that can be approximated by functions
in C∞(O):

E(O) :=
{
u ∈ H1(O) :

∃(un) ⊂ C∞(O)

un
n→∞−→ u in H1(O)

}
.

It is true that for many domains E(O) = H1(O). This is however not a property that is
satisfied by every domain. The functions of E(O) are, intuitively, the functions that can
be extended to functions of H1(Rd).

Proposition 13. If u ∈ H1(O) and u ≡ 0 near ∂O, then u ∈ E(O).

Proof. By Lemma 12 the function ũ obtained by extension of u by zero to Rd \ O is in
H1(Rd). Since D(Rd) is dense in H1(Rd), ũ can be approximated by elements of D(Rd).
Restricting back to O, the result is proved.
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Proposition 14. If u ∈ H1(O) and v ∈ E(O), then

∇(u v) = u∇v + v∇u.

Proof. Given v ∈ E(O), we consider a sequence (vn) ⊂ C∞(O) such that

vn
n→∞−→ v ∂xjvn

n→∞−→ ∂xjv ∀j in L2(O). (7)

Note that
∇(u vn) = u∇vn + vn∇u. (8)

because vn ∈ C∞(O) ⊂ C∞(O). Also, (7) implies that

u vn
n→∞−→ u v in D′(O). (9)

(Convergence in L2(O) is converted in convergence in L1(O) after multiplication by fixed
functions in L2(O) and convergence in L1(O) implies convergence in the sense of distri-
butions.) Therefore

∂xj(u vn)
n→∞−→ u v in D′(O),

but at the same time, (7) and (8) imply that

∂xj(u vn) = u ∂xjvn + vn∂xju
n→∞−→ u∂xjv + v ∂xju ∀j in D′(O).

This finishes the proof.

Remark. Proposition 14 says that when E(O) = H1(O), the product of two functions
in H1(O) is in L1(O) with derivatives in L1(O).

Proposition 15. Let u ∈ H1(O) and

v ∈ C(O), supp v ⊂ O, ∇v ∈ L∞(O)d.

Then u v ∈ E(O).

Proof. First of all, the properties of v imply that v ∈ E(O) by Proposition 13. Note also
that u v ∈ L2(O) because v ∈ L∞(O). Proposition 14 implies that we can apply Leibniz’
rule

∇(u v) = u∇v + v∇u ∈ L2(O)d,

so u v ∈ H1(O). Finally, we can apply again Proposition 13, because u v ≡ 0 in a
neighborhood of ∂O (since v satisfies this property).

Proposition 16. If u ∈ E(O), then

∂xj(u ◦ F ) = (∇u ◦ F )∂xjF ∀j. (10)

Therefore u ◦ F ∈ H1(Ω).

12



Proof. The proof of this result is very similar to that of Proposition 14. We start by
choosing a sequence (un) ⊂ C∞(O) such that

un
n→∞−→ u ∇un

n→∞−→ ∇u ∀j in L2(O).

This implies that

un ◦ F
n→∞−→ u ◦ F (∇un) ◦ F n→∞−→ (∇u) ◦ F ∀j in L2(Ω).

and finally

∂xj(u ◦ F )
n→∞←− ∂xj(un ◦ F ) = (∇un ◦ F )∂xjF

n→∞−→ (∇u ◦ F )∂xjF,

with convergence in the sense of distributions. We have applied that (10) holds true for
u ∈ C∞(O) and that ∂xjF ∈ L∞(Ω)d.

Lemma 17. Let u ∈ H1(O) be such that u ≡ 0 in a neighborhood of ∂O. Then∫
O
∂xju(x)dx = 0 ∀j.

Proof. We first choose ϕ ∈ D(O) such that ϕ ≡ 1 in the support of u. Then∫
O
∂xju =

∫
O
ϕ∂xju = 〈∂xju, ϕ〉D′(O)×D(O) = −〈u, ∂xjϕ〉D′(O)×D(O) = −

∫
O
u ∂xjϕ = 0,

because u ∂xjϕ ≡ 0 by construction of ϕ.

Proposition 18. Let u ∈ H1(O) and F : Ω → O a Lipschitz bijection with Lipschitz
inverse. Then

∂xj(u ◦ F ) = (∇u ◦ F )∂xjF ∀j.

As a consequence u ◦ F ∈ H1(Ω).

Proof. Let ϕ ∈ D(Ω). Then the function ϕ◦F−1 is continuous is O, has compact support
in O, and has bounded gradient. Therefore, by Propositions 15 and 16

w := u (ϕ ◦ F−1) ∈ E(O), and w ◦ F ∈ H1(Ω).

Also, by Proposition 14

∇w = (ϕ ◦ F−1)∇u+ u∇(ϕ ◦ F−1) = (ϕ ◦ F−1)∇u+ u(∇ϕ ◦ F−1)DF−1. (11)

Using Proposition 16 we prove that

∂xj(w ◦ F ) = (∇w ◦ F )∂xjF

= ϕ(∇u ◦ F )∂xjF + (u ◦ F )∇ϕ (DF−1 ◦ F )∂xjF︸ ︷︷ ︸
(DF )−1∂xjF=ej

(by (11))

= ϕ(∇u ◦ F )∂xjF + (u ◦ F )∂xjϕ.

13



Since w ◦ F = (u ◦ F )ϕ ∈ H1(Ω) vanishes in a neighborhood of ∂Ω, then by Lemma 17

0 =

∫
Ω

∂xj(w ◦ F ) =

∫
Ω

(∇u ◦ F )∂xjF ϕ+

∫
Ω

(u ◦ F ) ∂xjϕ

= 〈(∇u ◦ F )∂xjF, ϕ〉D′(Ω)×D(Ω) + 〈u ◦ F, ∂xjϕ〉D′(Ω)×D(Ω).

Since this equality holds for all ϕ ∈ D(Ω), this proves that

(∇u ◦ F )∂xjF = ∂xj(u ◦ F )

as distributions in Ω. Finally u◦F ∈ L2(Ω), ∇u◦F ∈ L2(Ω)d and ∂xjF ∈ L∞(Ω)d, which
proves that u ◦ F ∈ H1(Ω).
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