MATH 836: Elliptic Partial Differential Equations

Spring 2013 (F.–J. Sayas) I	Problems 1	. Distributions
-----------------------------	------------	-----------------

1. Let $\varphi \in \mathcal{D}(\mathbb{R}^d)$ be such that

Let then

$$\varphi_{\varepsilon}(\mathbf{x}) := \frac{1}{\varepsilon^d} \varphi(\frac{1}{\varepsilon} \mathbf{x}).$$

 $\int_{\mathbb{R}^d} \varphi(\mathbf{x}) \mathrm{d}\mathbf{x} = 1.$

Show that for all $f \in \mathcal{C}(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} \varphi_{\varepsilon}(\mathbf{x}) f(\mathbf{y} - \mathbf{x}) \mathrm{d}\mathbf{x} = \int_{\mathbb{R}^d} \varphi_{\varepsilon}(\mathbf{y} - \mathbf{x}) f(\mathbf{x}) \mathrm{d}\mathbf{x} \xrightarrow{\varepsilon \to 0} f(\mathbf{y}) \qquad \forall \mathbf{y} \in \mathbb{R}^d.$$

2. Let $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}$ in \mathbb{R}^d and let $\varphi \in \mathcal{D}(\mathbb{R}^d)$. Show that

$$\varphi(\cdot - \mathbf{x}_n) \stackrel{n \to \infty}{\longrightarrow} \varphi(\cdot - \mathbf{x}) \quad \text{in } \mathcal{D}(\mathbb{R}^d).$$

3. Let $\mathbf{h} \in \mathbb{R}^d$, (c_n) be a sequence of real numbers such that $\lim_{n\to\infty} c_n = 0$, and let $\varphi \in \mathcal{D}(\mathbb{R}^d)$. Show that

$$\frac{1}{|c_n|}(\varphi(\cdot + c_n \mathbf{h}) - \varphi) \xrightarrow{n \to \infty} \mathbf{h} \cdot \nabla \varphi \quad \text{in } \mathcal{D}(\mathbb{R}^d).$$

4. Let $\phi \in \mathcal{C}^{\infty}(\Omega)$, Show that

$$\varphi_n \xrightarrow{n \to \infty} \varphi \quad \text{in } \mathcal{D}(\Omega) \implies \phi \varphi_n \xrightarrow{n \to \infty} \phi \varphi \quad \text{in } \mathcal{D}(\Omega),$$

that is, multiplication by a $\mathcal{C}^{\infty}(\Omega)$ function is a sequentially continuous operator in $\mathcal{D}(\Omega)$.

- 5. Show that in the sense of distributions $\partial^{\alpha+\beta} = \partial^{\alpha}\partial^{\beta}$ for every pair of multi-indices.
- 6. (Salsa, Problem 7.5) Let u(x) := |x|. Compute u' and u'' in the sense of distributions on \mathbb{R} .
- 7. (Salsa, Problem 7.3) Let (c_k) be a sequence of real numbers such that there exists $p \ge 0$ satisfying

$$|c_k| \le C \, k^p \qquad \forall k$$

Show that the series

$$\sum_{k=1}^{\infty} c_k \sin(k \cdot)$$

converges in the sense of distributions in $\mathcal{D}'(\mathbb{R})$. Hint. Show that

$$\left|\int_{-\infty}^{\infty} \varphi(x) \sin(kx) dx\right| \le C_m(\varphi) k^{-m} \qquad \forall k \ge 0, \qquad \forall m.$$

- 8. Show that $\partial^{\alpha} : \mathcal{D}'(\Omega) \to \mathcal{D}'(\Omega)$ is sequentially continuous.
- 9. (Sequences converging to a Dirac delta) Let $\xi \in L^1(\mathbb{R}^d)$ be such that

$$\int_{\mathbb{R}^d} \xi(\mathbf{x}) \mathrm{d}\mathbf{x} = 1.$$

Consider then the functions

$$\xi_{\varepsilon} := \tfrac{1}{\varepsilon^d} \xi(\tfrac{1}{\varepsilon} \cdot).$$

Show that

$$\xi_{\varepsilon} \stackrel{\varepsilon \to 0}{\longrightarrow} \delta_{\mathbf{0}} \quad \text{in } \mathcal{D}'(\mathbb{R}^d).$$

- 10. Let $f_n \to f$ in $L^2(\Omega)$. Show that $f_n \to f$ in $\mathcal{D}'(\Omega)$.
- 11. (Multiplication of distributions by \mathcal{C}^{∞} functions) Let $T \in \mathcal{D}'(\Omega)$ and $\phi \in \mathcal{C}^{\infty}(\Omega)$. We define $\phi T : \mathcal{D}(\Omega) \to \mathbb{R}$ with the formula

$$\langle \phi T, \varphi \rangle_{\mathcal{D}'(\Omega) \times \mathcal{D}(\Omega)} := \langle T, \phi \varphi \rangle_{\mathcal{D}'(\Omega) \times \mathcal{D}(\Omega)}$$

Show that $\phi T \in \mathcal{D}'(\Omega)$.

12. (Fundamental solution for the Helmholtz equation) Consider the function $\Phi : \mathbb{R}^3 \to \mathbb{R}$, given by

$$\Phi(\mathbf{x}) := \frac{e^{-\imath \, k |\mathbf{x}|}}{4\pi |\mathbf{x}|}.$$

Show that

$$\Delta \Phi + k^2 \Phi = -\delta_0 \qquad \text{in } \mathcal{D}'(\mathbb{R}^3).$$