MATH 836: Elliptic Partial Differential Equations

Spring 2013 (F.-J. Sayas) Problems III. The non-homogeneous Dirichlet problem

1. If Ω is a Lipschitz domain, show that $\mathbb{R}^{d} \backslash \bar{\Omega}$ also satisfies the H^{1}-extension property.
2. The symmetry argument. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth version of the Heaviside function

$$
h \in \mathcal{C}^{\infty}(\mathbb{R}), \quad 0 \leq h \leq 1, \quad \operatorname{supp} h=[0, \infty), \quad \operatorname{supp}(1-h)=(-\infty, 1]
$$

and let $h_{n}(\mathbf{x}):=h\left(n x_{d}-1\right)$. We will write

$$
\mathbb{R}^{d} \ni \mathbf{x}=\left(\widetilde{\mathbf{x}}, x_{d}\right) \longmapsto \check{\mathbf{x}}:=\left(\widetilde{\mathbf{x}},-x_{d}\right)
$$

and consider the extension operator for functions $u: \mathbb{R}_{+}^{d} \rightarrow \mathbb{R}$,

$$
(E u)(\mathbf{x}):= \begin{cases}u(\mathbf{x}), & \text { if } \mathbf{x} \in \mathbb{R}_{+}^{d} \\ u(\check{\mathbf{x}}), & \text { if } x_{d}<0\end{cases}
$$

(a) Make a plot of the functions h_{n} and show that

$$
h_{n} \psi \in \mathcal{D}\left(\mathbb{R}_{+}^{d}\right), \quad h_{n} \psi \rightarrow \psi \text { in } L^{2}\left(\mathbb{R}_{+}^{d}\right) \quad \forall \psi \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

(b) Show that if $u \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$, then

$$
\langle E u, \psi\rangle=\int_{\mathbb{R}_{+}^{d}} u(\mathbf{x})(\psi(\mathbf{x})+\psi(\check{\mathbf{x}})) \mathrm{d} \mathbf{x} \quad \forall \psi \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

(c) By carefully playing with the functions h_{n}, show that if $u \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$, then

$$
\partial_{x_{j}}(E u)=E\left(\partial_{x_{j}} u\right) \quad 1 \leq j \leq d-1
$$

(d) Show that

$$
\left(\partial_{x_{d}} h_{n}\right)(\varphi-\varphi(\check{\check{ }})) \rightarrow 0 \text { in } L^{2}\left(\mathbb{R}_{+}^{d}\right) \quad \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

(e) Finally, using (a) and (d), show that if $u \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$, then

$$
\left\langle\partial_{x_{d}}(E u), \varphi\right\rangle=\int_{\mathbb{R}^{d}} \partial_{x_{d}} u(\mathbf{x})(\varphi(\mathbf{x})-\varphi(\check{\mathbf{x}})) \mathrm{d} \mathbf{x} \quad \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

The previous results show that if $u \in H^{1}\left(\mathbb{R}^{d}\right)$, then $E u \in H^{1}\left(\mathbb{R}^{d}\right)$. Why?
3. An extension operator for $H^{2}\left(\mathbb{R}_{+}^{d}\right)$. Given $u \in H^{2}\left(\mathbb{R}_{+}^{d}\right)$, we define

$$
(E u)(\mathbf{x})=(E u)\left(\widetilde{\mathbf{x}}, x_{d}\right):= \begin{cases}u\left(\widetilde{\mathbf{x}}, x_{d}\right) & \text { if } x_{d}>0 \\ 4 u\left(\widetilde{\mathbf{x}},-\frac{1}{2} x_{d}\right)-3 u\left(\widetilde{\mathbf{x}},-\frac{1}{3} x_{d}\right), & \text { if } x_{d}<0\end{cases}
$$

(a) Show that $E u \in H^{2}\left(\mathbb{R}^{d}\right)$.
(b) Show that $\|E u\|_{\mathbb{R}^{d}} \leq C_{0}\|u\|_{\mathbb{R}_{+}^{d}}$ for all $u \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$.
(c) Show that $\|E u\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C_{1}\|u\|_{H^{1}\left(\mathbb{R}_{+}^{d}\right)}$ for all $u \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$.
(d) Show that $\|E u\|_{H^{2}\left(\mathbb{R}^{d}\right)} \leq C_{2}\|u\|_{H^{2}\left(\mathbb{R}_{+}^{d}\right)}$ for all $u \in H^{2}\left(\mathbb{R}_{+}^{d}\right)$.
4. Understanding $H^{1 / 2}(\Gamma)$.
(a) Assume that $\partial \Omega$ is composed of two disjoint connected parts, Γ_{1} and Γ_{2}, each of them the boundary of a Lipschitz domain (think of an annular domain). Show that

$$
H^{1 / 2}(\Gamma) \equiv H^{1 / 2}\left(\Gamma_{1}\right) \times H^{1 / 2}\left(\Gamma_{2}\right)
$$

(Hint. Use $\varphi_{1}, \varphi_{2} \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that $\varphi_{1}+\varphi_{2} \equiv 1$ in a neighborhood of Ω and such that

$$
\operatorname{supp} \varphi_{2} \cap \Gamma_{1}=\emptyset \quad \text { and } \quad \operatorname{supp} \varphi_{2} \cap \Gamma_{1}=\emptyset
$$

to separate the boundaries.)
(b) Let Ω be a Lipschitz domain and $\Gamma_{\mathrm{pc}} \subset \partial \Omega$ a subset of its boundary such that it is possible to integrate on it. Consider the operator $\gamma_{\mathrm{pc}}: H^{1}(\Omega) \rightarrow L^{2}\left(\Gamma_{\mathrm{pc}}\right)$ given by

$$
\gamma_{\mathrm{pc}} u:=\left.(\gamma u)\right|_{\Gamma_{\mathrm{pc}}} .
$$

Show that this operator is the only possible extension of the operator

$$
\begin{aligned}
H^{1}(\Omega) \cap \mathcal{C}(\bar{\Omega}) & \longrightarrow L^{2}\left(\Gamma_{\mathrm{pc}}\right) \\
u & \left.\longmapsto u\right|_{\Gamma_{\mathrm{pc}}} .
\end{aligned}
$$

(Note that the restriction operators in the previous formulas are different to each other. Why?)
5. The trace from an exterior domain. Let Ω_{-}be a bounded Lipschitz domain and $\Omega_{+}:=\mathbb{R}^{d} \backslash \overline{\Omega_{-}}$. Since both $\Omega_{ \pm}$satisfy the extension property, we can define different trace operators

$$
\gamma^{ \pm}: H^{1}\left(\Omega_{ \pm}\right) \rightarrow L^{2}(\Gamma)
$$

(a) Show that if $u \in H^{1}\left(\mathbb{R}^{d}\right)$, then $\gamma^{+} u=\gamma^{-} u$.
(b) Show that the range of both trace operators is the same.
(c) Show that if $u \in H^{1}\left(\mathbb{R}^{d} \backslash \Gamma\right)$ and $\gamma^{+} u=\gamma^{-} u$, then $u \in H^{1}\left(\mathbb{R}^{d}\right)$. (Hint. Let $u_{ \pm}:=\left.u\right|_{\Omega_{ \pm}}$. Extend u_{+}to an element of $H^{1}\left(\mathbb{R}^{d}\right)$ and show that this extension minus u_{-}is in $H_{0}^{1}\left(\Omega_{-}\right)$.)
6. Reaction-diffusion problems. On a bounded Lipschitz domain, we consider two coefficients

$$
\kappa, c \in L^{\infty}(\Omega), \quad \kappa \geq \kappa_{0}>0, \quad c \geq 0 \quad \text { (almost everywhere) }
$$

and two data functions $(f, g) \in L^{2}(\Omega) \times H^{1 / 2}(\Gamma)$. Consider the problem

$$
\left[\begin{array}{l}
u \in H^{1}(\Omega), \quad \gamma u=g, \\
-\operatorname{div}(\kappa \nabla u)+c u=f \quad \text { in } \Omega .
\end{array}\right.
$$

(a) Write its equivalent variational formulation ad the associated minimization problem.
(b) Show well-posedness of this problem.
7. The optimal lifting. Consider the operator $\gamma^{\dagger}: H^{1 / 2}(\Gamma) \rightarrow H^{1}(\Omega)$, given by $u=\gamma^{\dagger} g$ is the solution of

$$
\left[\begin{array}{l}
u \in H^{1}(\Omega), \quad \gamma u=g, \\
-\Delta u+u=0 \quad \text { in } \Omega
\end{array}\right.
$$

Show that it is well defined, linear, bounded. Write the associated minimization problem and show that γ^{\dagger} is the Moore-Penrose pseudoinverse of the trace $\gamma: H^{1}(\Omega) \rightarrow H^{1 / 2}(\Gamma)$.

