MATH 836: Elliptic Partial Differential Equations

Spring 2013 (F.--J. Sayas) Problems V. Neumann boundary conditions

1. Let Ω be a bounded Lipschitz domain with boundary Γ. Consider the space

$$
H_{\Delta}^{1}(\Omega):=\left\{u \in H^{1}(\Omega): \Delta u \in L^{2}(\Omega)\right\},
$$

endowed with the norm

$$
\|u\|_{H_{\Delta}^{1}(\Omega)}^{2}:=\|u\|_{\Omega}^{2}+\|\nabla u\|_{\Omega}^{2}+\|\Delta u\|_{\Omega}^{2} .
$$

(a) Show that it is a Hilbert space. (This includes finding the inner product.)
(b) Show that $\nabla: H^{1}(\Omega) \rightarrow \mathbf{H}(\operatorname{div}, \Omega)$ is bounded.
(c) Show that the normal derivative map $\partial_{\nu}: H_{\Delta}^{1}(\Omega) \rightarrow H^{-1 / 2}(\Gamma)$, given by $\partial_{\nu} u:=$ $(\nabla u) \cdot \mathbf{n}$ is bounded and surjective.
2. Let Ω be a bounded Lipschitz domain. Show that the divergence operator

$$
\operatorname{div}: \mathbf{H}(\operatorname{div}, \Omega) \longrightarrow L^{2}(\Omega)
$$

is surjective. (Hint. Solve a Laplacian and take a gradient.)
3. Let Ω be a bounded Lipschitz domain with boundary Γ. Let $\alpha \in L^{\infty}(\Gamma)$ be non-negative. Use the Deny-Lions theorem to show that the bilinear form

$$
\int_{\Omega} \nabla u \cdot \nabla v+\int_{\Gamma} \alpha(\gamma u)(\gamma v)
$$

is coercive in $H^{1}(\Omega)$ if and only if $\alpha \neq 0$. (Note that we have assumed $\alpha \geq 0$.)
4. A variant of the Deny-Lions theorem. Let $a: H^{1}(\Omega) \times H^{1}(\Omega) \rightarrow \mathbb{R}$ be bilinear, bounded and such that

$$
a(u, u) \geq C\|\nabla u\|_{\Omega}^{2} \quad \forall u \in H^{1}(\Omega), \quad a(1,1) \neq 0 .
$$

Show that a is coercive in $H^{1}(\Omega)$. (Hint. Assume that it is not coercive, and follow the proof of the Deny-Lions Theorem.)
5. Convection-diffusion. We want to find conditions on $\boldsymbol{\beta}$ and c ensuring that the bilinear form

$$
(\nabla u, \nabla v)_{\Omega}+(\boldsymbol{\beta} \cdot \nabla u, v)_{\Omega}+(c u, v)_{\Omega}
$$

is bounded and coercive in $H^{1}(\Omega)$.
(a) Show that $c \in L^{\infty}(\Omega), \boldsymbol{\beta} \in \mathcal{C}^{1}(\bar{\Omega})^{d}$ satisfying

$$
\int_{\Omega}\left(c-\frac{1}{2} \nabla \cdot \boldsymbol{\beta}\right) u^{2}+\frac{1}{2} \int_{\Gamma}(\boldsymbol{\beta} \cdot \boldsymbol{n})(\gamma u)^{2} \geq 0 \quad \text { and } \quad \int_{\Omega} c>0
$$

are sufficient conditions for coercivity.
(b) Show that $c \in L^{\infty}(\Omega), \boldsymbol{\beta} \in L^{\infty}(\Omega)^{d}$ satisfying $\nabla \cdot \boldsymbol{\beta} \in L^{\infty}(\Omega), \boldsymbol{\beta} \cdot \mathbf{n}=0$ (this normal trace is taken in the sense of $\mathbf{H}(\operatorname{div}, \Omega))$ and

$$
c-\frac{1}{2} \nabla \cdot \boldsymbol{\beta} \geq 0, \quad \text { and } \quad \int_{\Omega} c>0
$$

are also sufficient conditions for coercivity.
(Hint. At a crucial moment, the result of the previous exercise is quite useful.)
6. Trace spaces on parts of the boundary. Let Ω be a bounded Lipschitz domain with boundary Γ, let $\Gamma_{D} \subset \Gamma$ be a relatively open subset of the boundary with positive ($d-1$)dimensional measure, and let $\Gamma_{N}:=\Gamma \backslash \overline{\Gamma_{D}}$. Consider the space

$$
V_{D}:=\left\{u \in H^{1}(\Omega): \gamma u=0 \quad \text { on } \Gamma_{D .}\right\}
$$

(a) Show that V_{D} is a closed subspace of $H^{1}(\Omega)$ and that $\|\nabla \cdot\|_{\Omega}$ defines an equivalent norm in V_{D}.
(b) Consider the space:

$$
H^{1 / 2}\left(\Gamma_{N}\right):=\left\{\left.\rho\right|_{\Gamma_{N}}: \rho \in H^{1 / 2}(\Gamma)\right\}
$$

endowed with the image norm

$$
\|\xi\|_{H^{1 / 2}\left(\Gamma_{N}\right)}:=\inf \left\{\|\rho\|_{H^{1 / 2}(\Gamma)}:\left.\rho\right|_{\Gamma_{N}}=\xi\right\} .
$$

Show that this norm is equal to the norm

$$
\|\xi\|:=\inf \left\{\|u\|_{H^{1}(\Omega)}:\left.\gamma u\right|_{\Gamma_{N}}=\xi\right\}
$$

which is the image norm of the trace-and-restriction operator $H^{1}(\Omega) \rightarrow L^{2}\left(\Gamma_{N}\right)$. Show that there exists a bounded extension operator $H^{1 / 2}\left(\Gamma_{N}\right) \rightarrow H^{1 / 2}(\Gamma)$.
(c) Consider the space

$$
\begin{aligned}
\widetilde{H}^{1 / 2}\left(\Gamma_{N}\right) & :=\left\{\xi \in L^{2}\left(\Gamma_{N}\right): \xi=\left.\gamma u\right|_{\Gamma N}, \quad u \in V_{D}\right\} \\
& =\left\{\left.\rho\right|_{\Gamma_{N}}: \rho \in H^{1 / 2}(\Gamma),\left.\quad \rho\right|_{\Gamma_{D}}=0\right\} \\
& =\left\{\xi \in H^{1 / 2}\left(\Gamma_{N}\right): \widetilde{\xi} \in H^{1 / 2}(\Gamma)\right\},
\end{aligned}
$$

where we have used the extension-by-zero operator

$$
L^{2}\left(\Gamma_{N}\right) \ni \xi \longmapsto \widetilde{\xi} \in L^{2}(\Gamma), \quad \widetilde{\xi}:= \begin{cases}\xi & \text { in } \Gamma_{N} \\ 0 & \text { in } \Gamma_{D}\end{cases}
$$

Show that all three definitions provide the same space. In this space we choose the norm

$$
\|\xi\|_{\tilde{H}^{1 / 2}\left(\Gamma_{N}\right)}:=\|\widetilde{\xi}\|_{H^{1 / 2}(\Gamma)}=\inf \left\{\|u\|_{H^{1}(\Omega)}: \gamma u=\widetilde{\xi}\right\} .
$$

Show that

$$
\|\xi\|_{H^{1 / 2}\left(\Gamma_{N}\right)} \leq\|\xi\|_{\widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)} \quad \forall \xi \in \widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)
$$

(d) Show that

$$
\widetilde{H}^{1 / 2}\left(\Gamma_{N}\right) \subset H^{1 / 2}\left(\Gamma_{N}\right) \subset L^{2}\left(\Gamma_{N}\right)
$$

with dense, bounded and proper injections. (Hint. $1 \notin \widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)$.)

The dual spaces for the two possible trace spaces on Γ_{N} are defined so that the following

$$
H^{1 / 2}\left(\Gamma_{N}\right) \subset L^{2}\left(\Gamma_{N}\right) \subset \widetilde{H}^{-1 / 2}\left(\Gamma_{N}\right) \quad \widetilde{H}^{1 / 2}\left(\Gamma_{N}\right) \subset L^{2}\left(\Gamma_{N}\right) \subset H^{-1 / 2}\left(\Gamma_{N}\right)
$$

are Gelfand triples. We will formally write

$$
\widetilde{H}^{-1 / 2}\left(\Gamma_{N}\right):=H^{1 / 2}\left(\Gamma_{N}\right)^{\prime}, \quad H^{-1 / 2}\left(\Gamma_{N}\right):=\widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)^{\prime}
$$

(e) Show that the expression

$$
\left\langle\left.(\mathbf{p} \cdot \mathbf{n})\right|_{\Gamma_{N}}, \xi\right\rangle_{H^{-1 / 2}\left(\Gamma_{N}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)}:=(\mathbf{p}, \nabla v)_{\Omega}+(\nabla \cdot \mathbf{p}, v)_{\Omega} \quad v \in V_{D},\left.\quad \gamma v\right|_{\Gamma_{N}}=\xi
$$

defines a bounded linear map $\mathbf{H}(\operatorname{div}, \Omega) \rightarrow H^{-1 / 2}\left(\Gamma_{N}\right)$.
(f) Show that

$$
\left\langle\left.(\mathbf{p} \cdot \mathbf{n})\right|_{\Gamma_{N}}, \xi\right\rangle_{H^{-1 / 2}\left(\Gamma_{N}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)}=\langle\mathbf{p} \cdot \mathbf{n}, \widetilde{\xi}\rangle_{\Gamma}
$$

where $\widetilde{\xi}$ is the extension by zero of ξ.
(Note about terminology. In much of the literature, the space $\widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)$ is denoted $H_{00}^{1 / 2}\left(\Gamma_{N}\right)$. Confusion reigns when denoting duals.)
7. Mixed problems for the Laplacian. Let us place ourselves in the notation of the previous problem. Let

$$
f \in L^{2}(\Omega), \quad h \in H^{-1 / 2}\left(\Gamma_{N}\right)
$$

(a) Write the variational problem that is equivalent to the following minimization problem:

$$
\frac{1}{2}\|\nabla u\|_{\Omega}^{2}-(f, u)_{\Omega}-\left\langle h,\left.(\gamma u)\right|_{\Gamma_{N}}\right\rangle_{H^{-1 / 2}\left(\Gamma_{N}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)}=\min !, \quad u \in V_{D}
$$

(b) Show well-posedness of the previous variational problem.
(c) Write an equivalent boundary value problem.
(d) Take now

$$
f \in L^{2}(\Omega), \quad g \in H^{1 / 2}\left(\Gamma_{D}\right), \quad h \in H^{-1 / 2}\left(\Gamma_{N}\right)
$$

Study the problem

$$
\left[\begin{array}{l}
u \in H^{1}(\Omega) \\
\left.\gamma u\right|_{\Gamma_{D}}=g \\
(\nabla u, \nabla v)_{\Omega}=(f, u)_{\Omega}+\left\langle h,\left.(\gamma v)\right|_{\Gamma_{N}}\right\rangle_{H^{-1 / 2}\left(\Gamma_{N}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{N}\right)} \quad \forall v \in V_{D}
\end{array}\right.
$$

