MATH 836: Elliptic Partial Differential Equations

Spring 2013 (F.-J. Sayas) Problems VI. Compact perturbations of coercive problems

1. Let Ω be a Lipschitz domain, and $\kappa \in L^{\infty}(\Omega)$ satisfy $\kappa \geq \kappa_{0}>0$ almost everywhere. Let finally $c \in L^{\infty}(\Omega)$ and $\alpha \in L^{\infty}(\Gamma)$. (No sign conditions are assumed on these two coefficients.) Show that the BVP

$$
\left[\begin{array}{ll}
-\nabla \cdot(\kappa \nabla u)+c u=f & \text { in } \Omega \\
\kappa \nabla u \cdot \mathbf{n}+\alpha \gamma u=h & (\text { on } \Gamma)
\end{array}\right.
$$

is well-posed (with arbitrary data $f \in L^{2}(\Omega), h \in H^{-1 / 2}(\Gamma)$) if and only if

$$
\left.\begin{array}{rr}
-\nabla \cdot(\kappa \nabla u)+c u & =0 \\
\kappa \nabla u \cdot \mathbf{n}+\alpha \gamma u & =0 \quad \text { in } \Omega \\
(\text { on } \Gamma)
\end{array}\right] \Longrightarrow u=0
$$

2. Let Ω be a Lipschitz domain and $\kappa \in L^{\infty}(\Omega)$ satisfy $\kappa \geq \kappa_{0}>0$ almost everywhere. Let $\boldsymbol{\beta} \in L^{\infty}(\Omega)^{d}$ and $c \in L^{\infty}(\Omega)$. Show that the problem

$$
\left[\begin{array}{l}
-\nabla \cdot(\kappa \nabla u)+\boldsymbol{\beta} \cdot \nabla u+c u=f \quad \text { in } \Omega \\
\gamma u=g
\end{array}\right.
$$

is well-posed (data are arbitrary functions $f \in L^{2}(\Omega), g \in H^{1 / 2}(\Gamma)$) if and only if

$$
\left.\begin{array}{rl}
-\nabla \cdot(\kappa \nabla u)+\boldsymbol{\beta} \cdot \nabla u+c u & =f \quad \text { in } \Omega \\
\gamma u & =g
\end{array}\right] \Longrightarrow u=0 .
$$

3. Finite dimensionality of eigenfunction spaces. Let Ω be a Lipschitz domain. A Dirichlet eigenvalue of the Laplacian in Ω is $\lambda \in \mathbb{C}$ such that the problem

$$
\left[\begin{array}{l}
-\Delta u=\lambda u \quad \text { in } \Omega \\
\gamma u=0
\end{array}\right.
$$

has non-trivial solutions. Show that the set of solutions of this problem is finite dimensional. Repeat the argument for Neumann eigenfunctions, that is, solutions of

$$
\left[\begin{array}{l}
-\Delta u=\lambda u \quad \text { in } \Omega \\
\partial_{\nu} u=0
\end{array}\right.
$$

(Hint. Rewrite the problem in a form where you can apply the Fredholm alternative.)
4. Consider the unit ball $B(\mathbf{0} ; 1) \subset \mathbb{R}^{2}$ and the sets $\Omega_{j}:=B(\mathbf{0} ; 1) \backslash \Xi_{j}$, where

$$
\Xi_{1}:=\left(-\frac{1}{2}, \frac{1}{2}\right) \times\{0\}, \quad \Xi_{2}:=(0,1) \times\{0\}
$$

Show that the Rellich-Kondrachov theorem holds in these sets, that is, that the space $H^{1}\left(\Omega_{j}\right)$ is compactly embedded into $L^{2}\left(\Omega_{j}\right)$. (Hint. Separate the unit ball into a positive and negative part and use the continuity of the restriction operators.)
5. Assume that $\Omega=\Omega_{1} \cup \Omega_{N}$, where all the domains Ω_{j} are Lipschitz. Show that $H^{1}(\Omega)$ is compactly embedded into $L^{2}(\Omega)$.
6. A compactness result for the trace operator. Let $Q:=(0,1)^{d}, \square:=(0,1)^{d-1} \equiv$ $(0,1)^{d-1} \times\{0\}$, and $\gamma: H^{1}(Q) \rightarrow L^{2}(\square)$ be the associated trace operator. The goal of this exercise is the proof of the compactness of γ. Consider the functions

$$
\phi_{\alpha}(\mathbf{x}):=\prod_{j=1}^{d} \cos \left(\alpha_{j} \pi x_{j}\right) \quad \alpha \in \mathbb{N}^{d}, \quad \psi_{\beta}(\mathbf{x}):=\prod_{j=1}^{d-1} \cos \left(\beta_{j} \pi x_{j}\right) \quad \beta \in \mathbb{N}^{d-1}
$$

Note that

$$
\gamma \phi_{(\beta, m)}=\psi_{\beta} \quad \beta \in \mathbb{N}^{d-1}, m \geq 0
$$

Consider finally the projection

$$
P_{\beta} u:=\sum_{m=0}^{\infty} \frac{\left(u, \phi_{(\beta, m)}\right)_{H^{1}(Q)}}{\left\|\phi_{(\beta, m)}\right\|_{H^{1}(Q)}^{2}} \phi_{(\beta, m)}
$$

(a) Show that

$$
u=\sum_{\beta \in \mathbb{N}^{d-1}} P_{\beta} u \quad \text { in } H^{1}(Q), \quad \forall u \in H^{1}(Q) .
$$

(Note that the series is an orthogonal series.)
(b) Show that the operator $\gamma P_{\beta}: H^{1}(Q) \rightarrow L^{2}(\square)$ is compact.
(c) Show that

$$
\left\|\gamma u-\sum_{\|\beta\| \leq N} \gamma P_{\beta} u\right\|_{\square}^{2} \leq C_{N}\|u\|_{H^{1}(Q)}^{2} \quad \forall u \in H^{1}(Q),
$$

where $C_{N} \rightarrow 0$ as $N \rightarrow \infty$. Prove that $\gamma: H^{1}(Q) \rightarrow L^{2}(\square)$ is compact.
7. Using local charts and the previous exercise prove that for all bounded Lipschitz domain Ω, the trace operator $\gamma: H^{1}(\Omega) \rightarrow L^{2}(\Gamma)$ is compact. (Hint. You will need to rescale the reuslt of the previous exercise to make the reference half-cylinder fit into a parallelepiped.)
8. Show that the inclusion operator $H^{1 / 2}(\Gamma) \rightarrow L^{2}(\Gamma)$ is compact. (Hint. Use a lifting of the trace.)
9. Let Ω be a bounded Lipschitz set with boundary Γ, and let $H^{3 / 2}(\Gamma):=\left\{\xi \in L^{2}(\Gamma): \xi=\right.$ $\left.\gamma u, \quad u \in H^{2}(\Omega)\right\}$. Show that $H^{3 / 2}(\Gamma)$ is compactly embedded into $H^{1 / 2}(\Gamma)$.

