
MATH 836: Elliptic Partial Differential Equations

Spring 2013 (F.–J. Sayas) Problems VII. Eigenvalues of elliptic operators

1. One-dimensional eigenvalue problems. Extract all the information that the Hilbert-
Schmidt theory provides on the following eigenvalue problems. In particular, characterize
Sobolev spaces in terms of the corresponding Fourier series. (Note that all eigenvalues and
eigenfunctions can be computed in these cases and the theory gives additional insight on
the convergence of the different Fourier series.)

(a) One dimensional Dirichlet eigenvalues and sine series.

−u′′ = λu in (0, 1), u(0) = u(1) = 0.

(b) One dimensional Neumann eigenvalues and cosine series.

−u′′ = λu in (0, 1), u′(0) = u′(1) = 0.

(c) One dimensional mixed eigenvalues and half-sine series.

−u′′ = λu in (0, 1), u(0) = u′(1) = 0.

(d) Periodic problem and sine-and-cosine series.

−u′′ = λu u(0) = u(1), u′(0) = u′(1).

2. Series solution for the Helmholtz equation. Let {λn;φn} be a complete orthonormal
eigensystem for the Laplacian on a bounded domain with Dirichlet boundary conditions

φn ∈ H1
0 (Ω), −∆φn = λnφn, (φn, φm)Ω + δnm.

Let k2 =6= λn for all n. Show that for f ∈ L2(Ω), the series

u =

∞∑
n=1

1

k2 − λn
(f, φn)Ωφn

converges in H1
0 (Ω) to the solution of

∆u+ k2u = f, u ∈ H1
0 (Ω).

3. A reciprocal of the Hilbert-Schmidt theorem. Let µn be a non-increasing sequence
of positive real numbers converging to zero. Let {φn} be an X-orthonormal sequence.
Show that the series

∞∑
n=1

µn(·, φn)Xφn

converges in the space of bounded linear operators X → X to a compact, selfadjoint and
positive definite operator. Show that N(G) is the orthogonal of span{φn : n ≥ 1}.
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4. The singular value decomposition. Let X,Y be Hilbert spaces and G : X → Y be a
compact operator such that N(G)> is infinitely dimensional.

(a) Show that N(G∗G) = N(G) and N(GG∗) = N(G∗).

(b) Show that we can find an X-orthonormal sequence, {φn}, and a sequence of positive
non-increasing numbers, converging to zero, such that

G∗G =

∞∑
n=1

µn(·, φn)Xφn,

with convergence in the sense of bounded operators X → X.

(c) Let now σn :=
√
µn and ψn := σ−1

n Gφn. Show that

G∗ψn = σnφn, Gφn = σnψn, GG∗ψn = µnψn.

Prove that {ψn} is Y−orthonormal.

(d) Let now

R := G−
∞∑
n=1

σn(·, φn)Xψn.

Whos that R is well defined and it is a compact operator X → Y . Show that G∗R = 0
and that Rφ⊥N(G∗) for all φ. From this, prove that R = 0, that is,

G =
∞∑
n=1

σn(·, φn)Xψn.

This decomposition is called the SVD of G.

(e) Show that

G∗ =
∞∑
n=1

σn(·, ψn)Y φn.
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MATH 836: Elliptic Partial Differential Equations

Spring 2013 (F.–J. Sayas) Problems VI. Compact perturbations of coercive problems

1. Let Ω be a Lipschitz domain, and κ ∈ L∞(Ω) satisfy κ ≥ κ0 > 0 almost everywhere.
Let finally c ∈ L∞(Ω) and α ∈ L∞(Γ). (No sign conditions are assumed on these two
coefficients.) Show that the BVP[

−∇ · (κ∇u) + cu = f in Ω,
κ∇u · n + αγu = h (on Γ),

is well-posed (with arbitrary data f ∈ L2(Ω), h ∈ H−1/2(Γ)) if and only if

−∇ · (κ∇u) + cu = 0 in Ω
κ∇u · n + αγu = 0 (on Γ)

]
=⇒ u = 0.

2. Let Ω be a Lipschitz domain and κ ∈ L∞(Ω) satisfy κ ≥ κ0 > 0 almost everywhere. Let
β ∈ L∞(Ω)d and c ∈ L∞(Ω). Show that the problem[

−∇ · (κ∇u) + β · ∇u+ c u = f in Ω,
γu = g,

is well-posed (data are arbitrary functions f ∈ L2(Ω), g ∈ H1/2(Γ)) if and only if

−∇ · (κ∇u) + β · ∇u+ c u = f in Ω
γu = g

]
=⇒ u = 0.

3. Finite dimensionality of eigenfunction spaces. Let Ω be a Lipschitz domain. A
Dirichlet eigenvalue of the Laplacian in Ω is λ ∈ C such that the problem[

−∆u = λu in Ω,
γu = 0,

has non-trivial solutions. Show that the set of solutions of this problem is finite dimen-
sional. Repeat the argument for Neumann eigenfunctions, that is, solutions of[

−∆u = λu in Ω,
∂νu = 0.

(Hint. Rewrite the problem in a form where you can apply the Fredholm alternative.)

4. Consider the unit ball B(0; 1) ⊂ R2 and the sets Ωj := B(0; 1) \ Ξj , where

Ξ1 := (−1
2 ,

1
2)× {0}, Ξ2 := (0, 1)× {0}.

Show that the Rellich-Kondrachov theorem holds in these sets, that is, that the space
H1(Ωj) is compactly embedded into L2(Ωj). (Hint. Separate the unit ball into a positive
and negative part and use the continuity of the restriction operators.)
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5. Assume that Ω = Ω1∪ . . .∪ΩN , where all the domains Ωj are Lipschitz. Show that H1(Ω)
is compactly embedded into L2(Ω).

6. A compactness result for the trace operator. Let Q := (0, 1)d, � := (0, 1)d−1 ≡
(0, 1)d−1×{0}, and γ : H1(Q)→ L2(�) be the associated trace operator. The goal of this
exercise is the proof of the compactness of γ. Consider the functions

φα(x) :=

d∏
j=1

cos(αjπxj) α ∈ Nd, ψβ(x) :=

d−1∏
j=1

cos(βjπxj) β ∈ Nd−1.

Note that
γφ(β,m) = ψβ β ∈ Nd−1,m ≥ 0.

Consider finally the projection

Pβu :=
∞∑
m=0

(u, φ(β,m))H1(Q)

‖φ(β,m)‖2H1(Q)

φ(β,m)

(a) Show that

u =
∑

β∈Nd−1

Pβu in H1(Q), ∀u ∈ H1(Q).

(Note that the series is an orthogonal series.)

(b) Show that the operator γPβ : H1(Q)→ L2(�) is compact.

(c) Show that

‖γu−
∑
‖β‖≤N

γPβu‖2� ≤ CN‖u‖2H1(Q) ∀u ∈ H1(Q),

where CN → 0 as N →∞. Prove that γ : H1(Q)→ L2(�) is compact.

7. Using local charts and the previous exercise prove that for all bounded Lipschitz domain
Ω, the trace operator γ : H1(Ω)→ L2(Γ) is compact. (Hint. You will need to rescale the
result of the previous exercise to make the reference half-cylinder fit into a parallelepiped.)

8. Show that the inclusion operator H1/2(Γ) → L2(Γ) is compact. (Hint. Use a lifting of
the trace.)

9. Let Ω be a bounded Lipschitz set with boundary Γ, and let H3/2(Γ) := {ξ ∈ L2(Γ) :
ξ = γu, u ∈ H2(Ω)}, endowed with the image norm. Show that H3/2(Γ) is compactly
embedded into H1/2(Γ).
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