
A gentle introduction to the Finite Element Method

Francisco-Javier Sayas

April 27, 2015

An introduction

If you haven’t been hiding under a stone during your studies of Engineering, Mathematics
or Physics, it is very likely that you have already heard about the Finite Element Method.
Maybe you even know some theoretical and practical aspects and have played a bit with
FEM software. What you are going to find here is a detailed and mathematically biased
introduction to several aspects of the Finite Element Method. This is not however a
course on the analysis of the method. It is just a demonstration of how it works, written
as applied mathematicians usually write it. There are going to be Mathematics involved,
but not lists of theorems and proofs. We are also going from the most particular cases
towards useful generalizations, from example to theory.

An aspect where this course differs from most of the many introductory books on
finite elements is the fact that I am going to begin directly with the two-dimensional case.
I have just sketched the one dimensional case in an appendix. Many people think that
the one-dimensional case is a better way of introducing the method, but I have an inner
feeling that the method losses richness in that very simple situation, so I prefer going
directly to the plane.

The course is divided into five lessons and is thought to be read in that order. We
cover the following subjects (but not in this order):

• triangular finite elements,

• finite elements on parallelograms and quadrilaterals,,

• adaptation to curved boundaries (isoparametric finite elements),

• three dimensional finite elements,

• assembly of the finite element method,

• some special techniques such as static condensation or mass lumping,

• eigenvalues of the associated matrices,

• approximation of evolution problems (heat and wave equations).

It is going to be around one hundred pages with many figures. Ideas will be repeated over
and over, so that you can read this with ease. These notes have evolved during the decade
I have been teaching finite elements to mixed audiences of mathematicians, physicists and
engineers. The tone is definitely colloquial. I could just claim that these are my classnotes

1

and that’s what I’m like1. There’s much more than that. First, I believe in doing your
best at being entertaining when teaching. At least that’s what I try. Behind that there is
a deeper philosophical point: take your work (and your life) seriously but, please, don’t
take yourself too seriously.

I also believe that people should be duly introduced when they meet. All this naming
old time mathematicians and scientists only by their last names looks to me too much
like the Army. Or worse, high school!2 I think you have already been properly introduced
to the great Leonhard Euler, David Hilbert, Carl Friedrich Gauss, Pierre Simon Laplace
and George Green3. If you haven’t so far, consider it done here. This is not about history.
It’s just good manners. Do you see what I mean by being colloquial?

Anyway, this is not about having fun4, but since we are at it, let us try to have a good
time while learning. If you take your time to read these notes with care and try the
exercises at the end of each lesson, I can assure that you will have made a significant step
in your scientific persona. Enjoy!

These notes were written in its present form during my first year as visiting faculty at
the University of Minnesota. They constitute an evolved form of my lecture notes to
teach Finite Elements at the graduate level, something I have done for many years in the
University of Zaragoza (Spain). The version you are reading now is a revision produced
for teaching at the University of Delaware.

1To the very common comment every person has their ways, the best answer I’ve heard is Oh, God,
no! We have good manners for that.

2When I was in high school, boys were called by their last names. I was Sayas all over. On the other
hand, girls were called by their first names.

3You will find here the names of Peter Lejeune Dirichlet, Carl Neumann or Sergei Sobolev, associated
to different concepts of PDE theory

4Unfortunately too many professional mathematicians advocate fun or beauty as their main motiva-
tions to do their job. It is so much better to have a scientific calling than this aristocratic detachment
from work...

2

Lesson 1

Linear triangular elements

1 The model problem

All along this course we will be working with a simple model boundary value problem,
which will allow us to put the emphasis on the numerical method rather than on the
intricacies of the problem itself. For some of the exercises and in forthcoming lessons we
will complicate things a little bit.

In this initial section there is going to be a lot of new stuff. Take your time to read it
carefully, because we will be using this material during the entire course.

1.1 The physical domain

The first thing we have to describe is the geometry (the physical setting of the problem).
You have a sketch of it in Figure 1.1.

Ω

Γ
D

Γ
N

Figure 1.1: The domain Ω and the Dirichlet and Neumann boundaries.

We are thus given a polygon in the plane R2. We call this polygon Ω. Its boundary
is a closed polygonal curve Γ. (There is not much difference if we suppose that there is

3

one or more holes inside Ω, in which case the boundary is composed by more than one
polygonal curve).

The boundary of the polygon, Γ is divided into two parts, that cover the whole of Γ
and do not overlap:

• the Dirichlet boundary ΓD,

• the Neumann boundary ΓN .

You can think in more mechanical terms as follows: the Dirichlet boundary is where
displacements are given as data; the Neumann boundary is where normal stresses are
given as data.

Each of these two parts is composed by full sides of the polygon. This is not much of
a restriction if you admit the angle of 180 degrees as separating two sides, that is, if you
want to divide a side of the boundary into parts belonging to ΓD and ΓN , you just have
to consider that the side is composed of several smaller sides with a connecting angle of
180 degrees.

1.2 The problem, written in strong form

In the domain we will have an elliptic partial differential equation of second order and on
the boundary we will impose conditions on the solution: boundary conditions or boundary
values. Just to unify notations (you may be used to different ways of writing this), we
will always write the Laplace operator, or Laplacian, as follows

∆u =
∂2u

∂x2
+
∂2u

∂y2
.

By the way, sometimes it will be more convenient to call the space variables (x1, x2) rather
than (x, y), so expect mixed notations.

The boundary value problem is then
−∆u+ c u = f in Ω,

u = g0 on ΓD,

∂nu = g1 on ΓN .

There are new many things here, so let’s go step by step:

• The unknown is a (scalar valued) function u defined on the domain Ω.

• c is a non-negative constant value. In principle we will consider two values c = 1
and c = 0. The constant c is put there to make clear two different terms when we
go on to see the numerical approximation of the problem. By the way, this equation
is usually called a reaction-diffusion equation. The diffusion term is given by
−∆u and the reaction term, when c > 0, is c u.

• f is a given function on Ω. It corresponds to source terms in the equation. It can
be considered as a surface density of forces.

4

• There are two functions g0 and g1 given on the two different parts of the boundary.
They will play very different roles in our formulation. As a general rule, we will
demand that g0 is a continuous function, whereas g1 will be allowed to be discon-
tinuous.

• The symbol ∂n denotes the exterior normal derivative, that is,

∂nu = ∇u · n,

where n is the unit normal vector on points of Γ pointing always outwards and ∇u
is, obviously, the gradient of u.

We are not going to worry about regularity issues. If you see a derivative, admit that it
exists and go on. We will reach a point where everything is correctly formulated. And
that moment we will make hypotheses more precise. If you are a Mathematician and
are already getting nervous, calm down and believe that I know what I’m talking about.
Being extra rigorous is not what is important at this precise time and place.

1.3 Green’s Theorem

The approach to solve this problem above with the Finite Element Method is based upon
writing it in a completely different form, which is sometimes called weak or variational
form. At the beginning it can look confusing to see all this if you are not used to
advanced Mathematics in Continuum Mechanics or Physics. We are just going to show
here how the formulation is obtained and what it looks like at the end. You might be
already bored in search of matrices and something more tangible! Don’t rush! If you get
familiarized with formulations and with the notations Mathematicians given to frame the
finite element method, many doors will be open to you: you will be able to read a large
body of literature that would be ununderstandable to you if you stick to what you already
know.

The most important theorem in this process or reformulating the problem is Green’s
Theorem, one of the most popular results of Vector Calculus. Sometimes it is also called
Green’s First Formula (there’s a popular second one and a less known third one). The
theorem states that ∫

Ω

(∆u) v +

∫
Ω

∇u · ∇v =

∫
Γ

(∂nu) v.

Note that there are two types of integrals in this formula. Both integrals in the left-hand
side are domain integrals in Ω, whereas the integral in the right-hand side is a line integral
on the boundary Γ. By the way, the result is also true in three dimensions. In that case,
domain integrals are volume integrals and boundary integrals are surface integrals. The
dot between the gradients denotes simply the Euclidean product of vectors, so

∇u · ∇v =
∂u

∂x1

∂v

∂x1

+
∂u

∂x2

∂v

∂x2

5

Remark. This theorem is in fact a simple consequence of the Divergence Theorem:∫
Ω

(div p) v +

∫
Ω

p · ∇v =

∫
Γ

(p · n) v.

Here div p is the divergence of the vector field p, that is, if p = (p1, p2)

div p =
∂p1

∂x1

+
∂p2

∂x2

.

If you take p = ∇u you obtain Green’s Theorem.

1.4 The problem, written in weak form

The departure point for the weak or variational formulation is Green’s Theorem. Here it
is again ∫

Ω

(∆u) v +

∫
Ω

∇u · ∇v =

∫
Γ

(∂nu) v =

∫
ΓD

(∂nu) v +

∫
ΓN

(∂nu) v.

Note that we have broken the integral on Γ as the sum of the integrals over the two
sub-boundaries, the Dirichlet and the Neumann boundary. You may be wondering what
v is in this context. In fact, it is nothing but a test. Wait for comments on this as the
section progresses.

Now we substitute what we know in this formula: we know that ∆u = c u − f in Ω
and that ∂nu = g1 on ΓN . Therefore, after some reordering∫

Ω

∇u · ∇v + c

∫
Ω

u v =

∫
Ω

f v +

∫
ΓN

g1 v +

∫
ΓD

(∂nu) v.

Note now that I have written all occurrences of u on the left hand side of the equation
except for one I have left on the right. In fact we don’t know the value of ∂nu on that
part of the boundary. So what we will do is impose that v cancels in that part, that is,

v = 0 on ΓD.

Therefore ∫
Ω

∇u · ∇v + c

∫
Ω

u v =

∫
Ω

f v +

∫
ΓN

g1 v, if v = 0 on ΓD.

Notice now three things:

• We have not imposed the Dirichlet boundary condition (u = g0 on ΓD) yet. Nev-
ertheless, we have imposed a similar one to the function v, but in a homogeneous
way.

• As written now, data (f and g1) are in the right-hand side and coefficients of the
equation (the only one we have is c) are in the left-hand side.

6

• The expression on the left-hand side is linear in both u and v. It is a bilinear form
of the variables u and v. The expression on the right-hand side is linear in v.

Without specifying spaces where u and v are, the weak formulation can be written as
follows:

find u such that

u = g0 on ΓD,∫
Ω

∇u · ∇v + c

∫
Ω

u v =

∫
Ω

f v +

∫
ΓN

g1 v for all v such that v = 0 on ΓD.

Note how the two boundary conditions appear in very different places of this formulation:

• The Dirichlet condition (given displacements) is imposed apart from the formulation
and involves imposing it homogeneously to the testing function v. It is called an
essential boundary condition.

• The Neumann condition (given normal stresses) appears inside the formulation. It
is called a natural boundary condition.

Being essential or natural is not inherently tied to the boundary condition: it is related
to the role of the boundary condition in the formulation. So when you hear (or say)
essential boundary condition, you mean a boundary condition that is imposed apart from
the formulation, whereas a natural boundary condition appears inside the formulation.
For this weak formulation of a second order elliptic equation we have

Dirichlet=essential Neumann=natural

What is v? At this point, you might (you should) be wondering what v is in the
formulation. In the jargon of weak formulations, v is called a test function. It tests the
equation that is satisfied by u. The main idea is that instead of looking at the equation
as something satisfied point-by-point in the domain Ω, you have an averaged version of
the equation. Then v plays the role of a weight function, something you use to average
the equation. In many contexts (books on mechanics, engineering or physics) v is called a
virtual displacement (or virtual work, or virtual whatever is pertinent), emphasizing the
fact that v is not the unknown of the system, but something that only exists virtually to
write down the problem. The weak formulation is, in that context, a principle of virtual
displacements (principle of virtual work, etc).

1.5 Delimiting spaces

We have reached a point where we should be a little more specific on where we are looking
for u and where v belongs. The first space we need is the space of square-integrable
functions

L2(Ω) =
{
f : Ω→ R :

∫
Ω

|f |2 <∞
}
.

7

A fully precise definition of this space requires either the introduction of the Lebesgue
integral or applying some limiting ideas. If you know what this is all about, good for you!
If you don’t, go on: for most functions you know you will always be able to check whether
they belong to this space or not by computing or estimating the integral and seeing if it
is finite or not.

The second space is one of the wide family of Sobolev spaces:

H1(Ω) =
{
u ∈ L2(Ω) : ∂u

∂x1
, ∂u
∂x2
∈ L2(Ω)

}
.

There is a norm related to this space

‖u‖1,Ω =

(∫
Ω

|∇u|2 +

∫
Ω

|u|2
)1/2

=

(∫
Ω

∣∣∣∣ ∂u∂x1

∣∣∣∣2 +

∫
Ω

∣∣∣∣ ∂u∂x2

∣∣∣∣2 +

∫
Ω

|u|2
)1/2

.

Sometimes this norm is called the energy norm and functions that have this norm finite
(that is, functions in H1(Ω)) are called functions of finite energy. The concept of energy
is however related to the particular problem, so it’s better to get used to have the space
and its norm clearly written down and think of belonging to this space as a type of
admissibility condition.

A particular subset of this space will be of interest for us:

H1
ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.

Note that H1
ΓD

(Ω) is a subspace of H1(Ω), that is, linear combinations of elements of
H1

ΓD
(Ω) belong to the same space.

The Mathematics behind. An even half-trained Mathematician should be wondering
what do we mean by the partial derivatives in the definition of H1(Ω), since one cannot
think of taking the gradient of an arbitrary function of L2(Ω), or at least to taking the
gradient and finding something reasonable. What we mean by restriction to ΓD in the
definition of H1

ΓD
(Ω) is not clear either, since elements or L2(Ω) are not really functions,

but classes of functions, where values of the function on particular points or even on lines
are not relevant. To make this completely precise there are several ways:

• Define a weak derivative for elements of L2(Ω) and what we understand by saying
that that derivative is again in L2(Ω). Then you move to give a meaning to that
restriction of a function in H1(Ω) to one part of its boundary.

• Go the whole nine yards and take time to browse a book on distribution theory and
Sobolev spaces. It takes a while but you end up with a pretty good intuition of
what this all is about.

• Take a shortcut. You first consider the space of functions

C1(Ω) =
{
u ∈ C(Ω) : ∂u

∂x1
, ∂u
∂x2
∈ C(Ω)

}
,

8

which is simple to define, and then you close it with the norm ‖ · ‖1,Ω. To do that
you have to know what closing or completing a space is (it’s something similar to
what you do to define real numbers from rational numbers). Then you have to prove
that restricting to ΓD still makes sense after this completion procedure.

My recommendation at this point is to simply go on. If you are a Mathematician you can
take later on some time with a good simple book on elliptic PDEs and will see that it is
not that complicated. If you are a Physicist or an Engineer you will probably not need to
understand all the details of this. There’s going to be a very important result in the next
section that you will have to remember and that’s almost all. Nevertheless, if you keep on
doing research related to finite elements, you should really know something more about
this. In due time you will have to find any of the dozens of books on Partial Differential
Equations for Scientists and Engineers, and read the details, which will however not be
given in the excruciating detail of PDE books for Mathematicians. But this is only an
opinion.

1.6 The weak form again

With the spaces defined above we can finally write our problem in a proper and fully
rigorous way:

find u ∈ H1(Ω) such that

u = g0 on ΓD,∫
Ω

∇u · ∇v + c

∫
Ω

u v =

∫
Ω

f v +

∫
ΓN

g1 v ∀v ∈ H1
ΓD

(Ω).

Let me recall that the condition on the general test function v ∈ H1
ΓD

(Ω) is the same as

v ∈ H1(Ω) such that v = 0 on ΓD,

that is, v is in the same space as the unknown u but satisfies a homogeneous version of
the essential boundary condition.

The data are in the following spaces

f ∈ L2(Ω), g1 ∈ L2(ΓN), g0 ∈ H1/2(ΓD).

We have already spoken of the first of these spaces. The space L2(ΓN) follows essentially
the same idea, with line integrals on ΓN instead of domain integrals on Ω. The last space
looks more mysterious: it is simply the space of restrictions to ΓD of functions of H1(Ω),
that is, g0 ∈ H1/2(ΓD) means that there exists at least a function u0 ∈ H1(Ω) such that
u0 = g0 on ΓD. In fact, all other functions satisfying this condition (in particular our
solution u) belong to

u0 +H1
ΓD

(Ω) = {u0 + v : v ∈ H1
ΓD

(Ω)} = {w ∈ H1(Ω) : w = g0 on ΓD}

(can you see why?). Unlike H1
ΓD

(Ω), this set is not a subspace of H1(Ω). The only
exception is the trivial case, when g0 = 0, since the set becomes H1

ΓD
(Ω).

9

The fact that g0 is in H1/2(ΓD) simply means that we are not looking for the solution
in the empty set. I cannot give you here a simple and convincing explanation on the name
of this space. Sorry for that.

2 The space of continuous linear finite elements

It’s taken a while, but we are there! Numerics start here. We are now going to discretize
all the elements appearing in this problem: the physical domain, the function spaces and
the variational/weak formulation.

We are going to do it step by step. At the end of this section you will have the simplest
example of a space of finite element functions (or simply finite elements). Many Math-
ematicians call these elements Courant elements, because Richard Courant introduced
them several decades ago with theoretical more than numerical intentions. In the jargon
of the business we call them triangular Lagrange finite elements of order one, or simply
linear finite elements, or for short (because using initials and short names helps speaking
faster and looking more dynamic) P1 elements.

2.1 Linear functions on a triangle

First of all, let us think for a moment about linear functions. A linear function (or, more
properly, affine function) of two variables is the same as a polynomial function of degree
at most one

p(x1, x2) = a0 + a1 x1 + a2 x2.

The set of these functions is denoted P1. Everybody knows that a linear function is
uniquely determined by its values on three different non-aligned points, that is, on the
vertices of a (non-degenerate) triangle.

Let us then take an arbitrary non-degenerate triangle, that we call K. You might
prefer calling the triangle T , as many people do. However, later on (in Lesson 3) the
triangle will stop being a triangle and will become something else, maybe a quadrilateral,
and then the meaning of the initial T will be lost. We draw it as in Figure 1.2, marking
its three vertices. With this we mean that a function

p ∈ P1 = {a0 + a1 x1 + a2 x2 : a0, a1, a2 ∈ R}

is uniquely determined by its values on these points. Uniquely determined means two
things: (a) there is only one function with given values on the vertices; (b) there is in fact
one function, that is, the values on the vertices are arbitrary. We can take any values we
want and will have an element of P1 with these values on the vertices. Graphically it is
just hanging a flat (linear) function from three non-aligned points.

Thus, a function p ∈ P1 can be determined

• either from its three defining coefficients (a0, a1, a2)

• or from its values on the three vertices of a triangle K.

10

2

3

1

K

Figure 1.2: A triangle and its three vertices.

Both possibilities state that the space P1 is a vector space of dimension three. While the
first choice (coefficients) gives us a simple expression of the function, the second is more
useful for many tasks, in particular for drawing the function. The three values of the
function on the vertices will be called the local degrees of freedom.

There is another important property that will be extremely useful in the sequel: the
value of p ∈ P1 on the edge that joins two vertices of the triangle depends only on the
values of p on this two vertices. In other words, the value of p ∈ P1 on an edge is uniquely
determined by the degrees of freedom associated to the edge, namely, the values of p on
the two vertices that lie on that edge.

2.2 Triangulations

So far we have functions on a single triangle. We now go for partitions of the domain into
triangles. A triangulation of Ω is a subdivision of this domain into triangles. Triangles
must cover all Ω but no more and must fulfill the following rule:

If two triangles have some intersection, it is either a common vertex or a
common full edge. In particular, two different triangles do not overlap.

Figure 1.3 shows two forbidden configurations. See Figure 1.5 to see how a triangulation
looks like. There is another rule, related to the partition of Γ into ΓD and ΓN :

The triangulation must respect the partition of the boundary into Dirichlet and
Neumann boundaries.

This means that an edge of a triangle that lies on Γ cannot be part Dirichlet and part
Neumann. Therefore if there is a transition from Dirichlet to Neumann boundaries, there
must be a vertex of a triangle in that transition point. Note that this situation has to be
taken into account only when there is a transition from Dirichlet to Neumann conditions
inside a side of the polygon Ω.

The set of the triangles (that is, the list thereof) will be generally denoted Th. The
subindex h makes reference to the diameter of the triangulation, defined as the length
of the longest edge of all triangles, that is, the longest distance between vertices of the
triangulation.

11

Figure 1.3: Situations not admitted in triangulations. In the second one we see the
appearance of what is called a hanging node.

2.3 Piecewise linear functions on a triangulation

We now turn our attention to functions defined on the whole of the polygon Ω that has
been triangulated as shown before.

Consider first two triangles sharing a common edge, say K and K ′ (see Figure 1.6).
We take values at the four vertices of this figure and build a function that belongs to P1

on each of the triangles and has the required values on the vertices. Obviously we can
define a unique function with this property. Moreover, since the value on the common
edge depends only on the values on the two common vertices, the resulting function is
continuous.

We can do this triangle by triangle. We end up with a function that is linear on each
triangle and globally continuous. The space of such functions is

Vh =
{
uh ∈ C(Ω) : uh|K ∈ P1, ∀K ∈ Th

}
.

If we fix values on the set of vertices of the triangulation Th, there exists a unique uh ∈ Vh
with those values on the vertices. Therefore an element of Vh is uniquely determined by
its values on the set of vertices of the triangulation. The values on the vertices of the
whole triangulation are the degrees of freedom that determine an element of Vh. In this
context we will call nodes to the vertices in their role as points where we take values. (In
forthcoming lessons there will be other nodes in addition to vertices.)

Elements of the space Vh are called linear finite element functions or simply P1 finite
elements.

Let us take now a numbering of the set of nodes (that is, vertices) of the triangulation.
At this moment any numbering goes1. In Figure 1.7 we have a numbering of the nodes of
the triangulation of our model domain. The vertices will be generically denoted pi with
i varying from one to the number of vertices, say N .

1And in many instances this will be so to the end of the discretization process. Using one numbering
or another has a great influence on the shape of the linear system we will obtain in Section 3, but this
shape is relevant only for some choices of the method to solve the corresponding linear system.

12

Γ
 N

Γ
 D

Figure 1.4: A forbidden transition of Dirichlet to Neumann boundary conditions happen-
ing inside an edge. Graphical notation for Dirichlet a Neumann boundaries as shown in
many Mechanics books are given in the graph.

Because of what we have explained above, if we fix one node (vertex) and associate
the value one to this node and zero to all others, there exists a unique function ϕi ∈ Vh
that has these values, that is,

ϕi(pj) = δij =

{
1, j = i,
0, j 6= i.

The aspect of one of these functions is shown in Figure 1.8.
Notice that if a triangle K has not pi as one of its vertices, ϕi vanishes all over K,

since the value of ϕi on the three vertices of K is zero. Therefore, the support of ϕi (the
closure of the set of points where ϕi is not zero) is the same as the union of triangles that
share pi as vertex. In Figure 1.9 you can see the type of supports you can find.

There is even more. Take uh ∈ Vh. It is simple to see that

uh =
N∑
j=1

uh(pj)ϕj.

Why? Let me explain. Take the function
∑N

j=1 uh(pj)ϕj and evaluate it in pi: you obtain

N∑
j=1

uh(pj)ϕj(pi) =
N∑
j=1

uh(pj)δji = uh(pi).

Therefore, this function has exactly the same nodal values as uh and must be uh. The
fact that two functions of Vh with the same nodal values are the same function is the
linear independence of the nodal functions {ϕi}. What we have proved is the fact that
{ϕi : i = 1, . . . , N} is a basis of Vh and therefore

dimVh = N = #{vertices}.

13

Figure 1.5: A triangulation of Ω.

K K’

x
1

x
2

Figure 1.6: Two triangles with a common edge.

There is a particularly interesting aspect of this basis of Vh that makes it special. In
general if you have a basis of Vh you know that you can decompose elements of Vh as a
unique linear combination of the elements of the basis, that is,

uh =
N∑
j=1

uj ϕj

is a general element of Vh. With this basis, the coefficients are precisely the values of uh
on the nodes, that is, uj = uh(pj). Hence, the coefficients of uh in this basis are something
more than coefficients: there are values of the function on points.

An important result. As you can see, when defining the space Vh we have just glued
together P1 functions on triangles. Thanks to the way we have made the triangulation
and to the way we chose the local degrees of freedom, what we obtained was a continuous
function. One can think, is this so important? Could I take something discontinuous? At
this level, the answer is a very loud and clear NO! The reason is the following result that
allows us to know whether certain functions are in H1(Ω) or not.

Theorem. Let uh be a function defined on a triangulation of Ω such that

14

7
12

13

9

8

10

6

5

2

3

4

1

17

16

15
11

14

18

Figure 1.7: Global numbering of nodes.

Figure 1.8: The graph of a nodal basis function: it looks like a camping tent.

restricted to each triangle it is a polynomial (or smooth) function. Then

uh ∈ H1(Ω) ⇐⇒ uh is continuous.

There is certain intuition to be had on why this result is true. If you take a derivative of
a piecewise smooth function, you obtain Dirac distributions along the lines where there
are discontinuities. Dirac distributions are not functions and it does not make sense to
see if the are square-integrable or not. Therefore, if there are discontinuities, the function
fails to have a square-integrable gradient.

2.4 Dirichlet nodes

So far we have taken into account the discrete version of the domain Ω but not the partition
of its boundary Γ into Dirichlet and Neumann sides. We first need some terminology. A
Dirichlet edge is an edge of a triangle that lies on ΓD. Similarly a Neumann edge is an
edge of a triangle that is contained in ΓN . The vertices of the Dirichlet edges are called
Dirichlet nodes. The doubt may arise in transitions from the Dirichlet to the Neumann
part of the boundary. If a node belongs to both ΓN and ΓD, it is a Dirichlet node.

15

Figure 1.9: Supports of two nodal basis functions.

Figure 1.10: Dirichlet nodes corresponding to the domain as depicted in Figure 1.1

In truth, in parallel to what happens with how the Dirichlet and Neumann boundary
conditions are treated in the weak formulation, we will inherit two different discrete
entities:

• Dirichlet nodes, and

• Neumann edges.

Let us now recall the space

H1
ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.

We might be interested in the space

V ΓD
h = Vh ∩H1

ΓD
(Ω) = {vh ∈ Vh : vh = 0, on ΓD}.

16

Recall now the demand we placed on the triangulation to respect the partition of Γ into
Dirichlet and Neumann parts. Because of this, vh ∈ Vh vanishes on ΓD if and only if it
vanishes on the Dirichlet edges. Again, since values of piecewise linear functions on edges
are determined by the values on the corresponding vertices, we have

vh ∈ Vh vanishes on ΓD if and only if it vanishes on all Dirichlet nodes.

The good news is the fact that we can easily construct a basis of V ΓD
h . We simply eliminate

the elements of the nodal basis corresponding to Dirichlet nodes. To see that recall that
when we write vh ∈ Vh as a linear combination of elements of the nodal basis, what we
have is actually

vh =
N∑
j=1

vh(pj)ϕj.

Therefore vh = 0 on ΓD if and only if the coefficients corresponding to nodal functions of
Dirichlet nodes vanish. To write this more efficiently we will employ two lists, Dir and
Ind (as in independent or free nodes), to number separately Dirichlet and non-Dirichlet
(independent/free) nodes. It is not necessary to number first one type of nodes and
then the other, although sometimes it helps to visualize things to assume that we first
numbered the free nodes and then the Dirichlet nodes.2 With our model triangulation
numbered as in Figure 1.7 and with the Dirichlet nodes marked in 1.10, the lists are

Dir = {9, 13, 14, 15, 17, 18},
Ind = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16}.

With these lists, an element of Vh can be written as

uh =
∑
j∈Ind

ujϕj +
∑
j∈Dir

ujϕj, uj = uh(pj)

and an element of V ΓD
h has the form

vh =
∑
j∈Ind

vjϕj.

Finally, this proves that

dimV ΓD
h = #Ind = #{nodes} −#{Dirichlet nodes}.

2The reason for not doing this is merely practical. The triangulation is built without taking into
account which parts of the boundary are Dirichlet and which are Neumann. As we will see in the next
Lesson, the numbering of the nodes is inherent to the way the triangulation is given. In many practical
problems we play with the boundary conditions for the same domain and it is not convenient to renumber
the vertices each time.

17

3 The finite element method

3.1 The discrete variational problem

After almost fifteen pages of introducing concepts and formulas we can finally arrive at a
numerical approximation of our initial problem. Recall that we wrote the problem in the
following form

find u ∈ H1(Ω) such that

u = g0 on ΓD,∫
Ω

∇u · ∇v + c

∫
Ω

u v =

∫
Ω

f v +

∫
ΓN

g1 v ∀v ∈ H1
ΓD

(Ω).

The finite element method (with linear finite elements on triangles) consists of the follow-
ing discrete version of the preceding weak formulation:

find uh ∈ Vh such that

uh(p) = g0(p) for every Dirichlet node p,∫
Ω

∇uh · ∇vh + c

∫
Ω

uh vh =

∫
Ω

f vh +

∫
ΓN

g1 vh ∀vh ∈ V ΓD
h .

As you can easily see we have made three substitutions:

• We look for the unknown in the space Vh instead of on the whole Sobolev space.
This means that we have reduced the problem to computing uh in the vertices of
the triangulation (in the nodes) and we are left with a finite number of unknowns.

• We have substituted the Dirichlet condition by fixing the values of the unknowns
on Dirichlet nodes. This fact reduces the number of unknowns of the system to the
number of free nodes.3

• Finally, we have reduced the testing space from H1
ΓD

(Ω) to its discrete subspace

V ΓD
h . We will show right now that this reduces the infinite number of tests of the

weak formulation to a finite number of linear equations.

3.2 The associated system

We write again the discrete problem, specifying the numbering of Dirichlet nodes in the
discrete Dirichlet condition:

find uh ∈ Vh such that

uh(pi) = g0(pi) ∀i ∈ Dir,∫
Ω

∇uh · ∇vh + c

∫
Ω

uh vh =

∫
Ω

f vh +

∫
ΓN

g1 vh ∀vh ∈ V ΓD
h .

3This way of substituting the Dirichlet condition by a sort of interpolated Dirichlet condition is neither
the only nor the best way of doing this approximation, but it is definitely the simplest, so we will keep
it like this for the time being.

18

Our next claim is the following: the discrete equations∫
Ω

∇uh · ∇vh + c

∫
Ω

uh vh =

∫
Ω

f vh +

∫
ΓN

g1 vh ∀vh ∈ V ΓD
h

are equivalent to the following set of equations∫
Ω

∇uh · ∇ϕi + c

∫
Ω

uh ϕi =

∫
Ω

f ϕi +

∫
ΓN

g1 ϕi ∀i ∈ Ind.

Obviously this second group of equations is a (small) part of the original one: it is enough
to take vh = ϕi ∈ V ΓD

h . However, because of the linearity of the first expression in vh, if
we have the second one for all ϕi, we have the equation for all possible linear combinations
of these functions, that is for all vh ∈ V ΓD

h . Summing up, the method is equivalent to this
set of N equations to determine the function uh:

find uh ∈ Vh such that

uh(pi) = g0(pi) ∀i ∈ Dir,∫
Ω

∇uh · ∇ϕi + c

∫
Ω

uh ϕi =

∫
Ω

f ϕi +

∫
ΓN

g1 ϕi ∀i ∈ Ind.

In order to arrive at a linear system, we first have to write uh in terms of the nodal basis
functions

uh =
∑
j∈Ind

ujϕj +
∑
j∈Dir

ujϕj.

We next substitute the discrete Dirichlet condition in this expression

uh =
∑
j∈Ind

ujϕj +
∑
j∈Dir

g0(pj)ϕj.

Finally we plug this expression into the discrete variational equation∫
Ω

∇uh · ∇ϕi + c

∫
Ω

uh ϕi =

∫
Ω

f ϕi +

∫
ΓN

g1 ϕi,

apply linearity, noticing that

∇uh =
∑
j∈Ind

uj∇ϕj +
∑
j∈Dir

g0(pj)∇ϕj

and move to the right-hand side what we already know (the Dirichlet data)∑
j∈Ind

(∫
Ω

∇ϕj · ∇ϕi + c

∫
Ω

ϕjϕj

)
uj =

∫
Ω

f ϕi +

∫
ΓN

g1 ϕi

−
∑
j∈Dir

(∫
Ω

∇ϕj · ∇ϕi + c

∫
Ω

ϕjϕj

)
g0(pj).

This is a linear system with as many equations as unknowns, namely with #Ind =
dimV ΓD

h equations and unknowns. The unknowns are in fact the nodal values of uh
on the free (non-Dirichlet) vertices of the triangulation. After solving this linear system,
the formula for uh lets us recover the function everywhere, not only on nodes.

19

Remark Unlike the finite difference method, the finite element method gives as a result
a function defined on the whole domain and not a set of point values. Reconstruction
of the function from computed quantities is in the essence of the method and cannot be
counted as a posprocessing of nodal values.

3.3 Mass and stiffness

There are two matrices in the system above. Both of them participate in the final matrix
and parts of them go to build the right-hand side. First we have the stiffness matrix

wij =

∫
Ω

∇ϕj · ∇ϕi

and second the mass matrix

mij =

∫
Ω

ϕj ϕi.

Both matrices are defined for i, j = 1, . . . , N (although parts of these matrices won’t
be used). Both matrices are symmetric. The mass matrix M is positive definite. The
stiffness matrix is positive semidefinite and in fact almost positive definite: if we take an
index i and erase the i−th row and the i−th column of W, the resulting matrix is positive
definite.

The system can be easily written in terms of these matrices, using the vector

bi =

∫
Ω

f ϕi +

∫
ΓN

g1 ϕi, i ∈ Ind,

to obtain ∑
j∈Ind

(
wij + cmij

)
uj = bi −

∑
j∈Dir

(
wij + cmij

)
g0(pj), i ∈ Ind.

This is clearly a square symmetric linear system. If c = 0 (then the original equation is
the Poisson equation −∆u = f and no reaction term appears), only the stiffness matrix
appears. Therefore, stiffness comes from diffusion. Likewise mass proceeds from reaction.

The matrix is positive definite except in one special situation: when c = 0 and there
are no Dirichlet conditions (i.e., ΓD = ∅, i.e., Ind = {1, . . . , N} and V ΓD

h = Vh). For the
pure Neumann problem for the Laplace operator there are some minor solvability issues
similar to the occurrence of rigid motions in mechanical problems. Let us ignore this
minor complication for now.

Now look again at the figure showing the supports of nodal basis functions (we copy
it right here for convenience) and look at the mass matrix

mij =

∫
Ω

ϕj ϕi.

If the supports of ϕi and ϕj have no intersecting area, the integral defining mij vanishes.
In fact, since the product of ϕi and ϕj is a non-negative function, mij = 0 if and only if

20

Figure 1.11: Supports of two nodal basis functions

the area of the intersection of the supports is zero4. This happens whenever pi and pj
are not vertices of the same triangle.

We say that two nodes are adjacent if they belong to the same triangle.

In the case of the stiffness matrix we have a similar (maybe weaker result): if the nodes
i and j are not adjacent, then wij = 0.

This fact makes the mass and stiffness matrices display a great sparsity character.
Given a row i, there are only non-zero entries on positions related to nodes that are
adjacent to the i−th node.

Going back to the system∑
j∈Ind

(
wij + cmij

)
uj = bi −

∑
j∈Dir

(
wij + cmij

)
g0(pj), i ∈ Ind,

let us remark some simple facts:

• As written now, all data appear in the right-hand side of the system (Neumann data
and source terms are in the vector b, Dirichlet data appear multiplying columns of
the stiffness-plus-mass matrix).

• Of the full matrices W and M we discard rows corresponding to Dirichlet nodes
(Dir indices), since no testing is done with the corresponding basis functions. The
columns corresponding to these indices are not eliminated though: they are sent to
the right-hand side multiplied by the values of the unknown in the Dirichlet nodes,
which are known.

4By definition the support of a function includes the boundary of the set where the function is non-zero.
Therefore, it is possible that the intersection is one edge. The integral is still zero.

21

4 Exercises

1. Third type of boundary condition. Let us consider our usual polygon Ω and
the boundary value problem [

−∆u+ u = f in Ω,

∂nu+ k u = g on Γ.

Here k is a positive parameter. This type of boundary condition is usually called
a boundary condition of the third kind (first being Dirichlet and second Neumann)
or a Robin (or Fourier) boundary condition.

(a) Write down the weak formulation for this problem. Note that the condition
is natural and there will not be essential boundary condition in the resulting
formulation.

(b) Write down in detail (as in Sections 3.2/ 3.3) the linear system that has to be
solved when we apply the finite element method to this problem. Check that
there is a new matrix that can be seen as a boundary-mass matrix. How many
non-zero entries does each row of this new matrix have?

If we take ε very small and the following slightly modified version of the boundary
condition

ε∂nu+ u = g0, on Γ

(take k = ε−1 and g = ε−1g0), we are enforcing the Dirichlet condition in an
approximate way. This is done in some commercial and open-source packages.

2. A particular domain. Consider the boundary problem of Section 1 on the domain
given in the next figure and the following specification for ΓN and ΓN

the left and upper sides have Dirichlet conditions

and where numbering is done as shown. Let A = W + M be the matrix associated
to the system obtained by discretizing with the P1 finite element method

9

8

2

1

3

11

5

10

4

7

6

22

(a) Write the index sets Dir and Ind.

(b) Write which elements of the 12th row of A are non-zero.

(c) Identify on the figure the support of the nodal basis function ϕ13.

(d) What’s the size of the system that has to be solved?

(e) We call the profile of the matrix A to the following vector:

m(i) = inf{j : aij 6= 0}, i = 1, . . . ,#{nodos}

that is, m(i) indicates the column number where the first non-zero entry of the
ith row is. Compute the profile of W + M (without eliminating Dirichlet rows
and columns). Draw the form of the matrix using the profile.

(f) In the preceding graph mark which rows and columns will be modified by
introduction of Dirichlet conditions. Compute the profile of the reduced matrix
(without Dirichlet rows and columns).

(g) What happens if we number nodes horizontally?

23

Lesson 2

Theoretical and practical notions

1 Assembly

The first lesson left us with a linear system to solve in order to approximate the boundary
value problem with the finite element method. There is however the trick question on
how to compute all the integrals that appear in the matrix and right-hand side of the
system. This is done by a clever process called assembly of the system, another of the
many good deeds of the finite element method that has made it so extremely popular (as
in popular among scientists and engineers, of course) in the last decades.

At this moment we need the polygonal domain Ω and:

• a triangulation Th,

• a numbering of the nodes {pi} (nodes are the vertices of the triangles),

• the set of the nodal basis functions {ϕi}.

In this section, nNod will be the global number of nodes.

Ω

Γ
D

Γ
N

7
12

13

9

8

10

6

5

2

3

4

1

17

16

15
11

14

18

Figure 2.1: Geometry of the problem and triangulation

24

1.1 The mass and stiffness matrices

We are going to center our attention in the efficient construction of the stiffness matrix

wij =

∫
Ω

∇ϕj · ∇ϕi

and of the mass matrix

mij =

∫
Ω

ϕj ϕi.

Integrals over Ω can be decomposed as the sum of integrals over the different triangles

wij =

∫
Ω

∇ϕj · ∇ϕi =
∑
K

∫
K

∇ϕj · ∇ϕi =
∑
K

wKij .

On each triangle we are going to define three local nodal basis functions. First assign
a number to each of the three vertices of a triangle K:

pK1 , pK2 , pK3 .

Then consider the functions

NK
1 , NK

2 , NK
3 ∈ P1

that satisfy
NK
α (pKβ) = δαβ, α, β = 1, 2, 3.

It is simple to see that the nodal basis function ϕi restricted to the triangle K is either
zero (this happens when pi is not one of the three vertices of K) or one of the NK

α

functions. More precisely, let nα be the global number of the local node with number α
in the triangle K. This means that

NK
α = ϕnα , on the triangle K.

We can now compute the 3× 3 matrix KK

kKαβ =

∫
K

∇NK
β · ∇NK

α , α, β = 1, 2, 3.

This is due to be simple, since the functions NK
α are polynomials of degree one (unlike

the functions ϕi that are only piecewise polynomials). Later on, we will see strategies to
do this computation. Note at this moment that computation of this matrix depends only
on the triangle K and does not take into account any other element of the triangulation.

Therefore
kKαβ = wKnαnβ

All other elements of the matrix WK are zero. Recall again that WK is a nNon× nNod
matrix and that

W =
∑
K

WK .

25

7
12

13

9

8

10

6

5

2

3

4

1

17

16

15
11

14

18

10

5

4

6

7

2

8

1

9

3
11

12

13

14

15

16

17

18

19

23

21

20

22

Figure 2.2: A numbering of the triangles.

2

3

1

K

local global
1 ↔ 12
2 ↔ 16
3 ↔ 11

Figure 2.3: The 14th triangle and their vertex numberings.

The assembly process requires then a given numbering of triangles as shown in Figure
2.2. The order of this numbering is only used to do the computations but does not modify
the shape of the final result.

The process to assemble the mass matrix is the same. Effective assembly of the mass
and stiffness matrices can be done at the same time. Instead of computing separately the
matrix KK and a similar one for the mass matrix, we can directly try to compute the
3× 3 matrix with elements∫

K

∇NK
β · ∇NK

α + c

∫
K

NK
β NK

α , α, β = 1, 2, 3.

26

1.2 The reference element

To compute the elements∫
K

∇NK
β · ∇NK

α and

∫
K

NK
β NK

α

we need: (a) either and effective way of evaluating the functions NK
α and their gradients;

(b) or a closed form for the resulting integrals. Both possibilities are done usually by
moving to the so-called reference element.

For triangles, the reference element is the triangle with vertices

p̂1 = (0, 0), p̂2 = (1, 0), p̂3 = (0, 1).

To distinguish variables in the reference element and in a general triangle (in this context

K
^

1

3

2

Figure 2.4: The reference element

we say a physical element) it is customary to use the variables (ξ, η) in the reference
element and (x, y) in the physical element. In the mathematical literature for FEM it
is also usual to put a hat on the name of the variables in the reference element, so that
(x̂, ŷ) would be used to denote coordinates in the reference configuration.

An unimportant detail. Some people prefer to use a different reference triangle, with
the same shape but with vertices on (−1,−1), (1,−1) and (−1, 1). Some details of the
forthcoming computations have to be adapted if this choice is taken.

The local nodal functions in the reference triangles are three P1 functions satisfying

N̂α(p̂β) = δαβ, α, β = 1, 2, 3.

These functions are precisely

N̂1 = 1− ξ − η, N̂2 = ξ, N̂3 = η

or, if you prefer hatting variables (this is the last time we will write both expressions)

N̂1 = 1− x̂− ŷ, N̂2 = x̂, N̂3 = ŷ

27

Let us now take the three vertices of a triangle K

pK1 = (x1, y1), pK2 = (x2, y2), pK3 = (x3, y3).

The following affine transformation1[
x
y

]
=

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
︸ ︷︷ ︸

BK

[
ξ
η

]
+

[
x1

y1

]

=

[
x1

y1

]
(1− ξ − η) +

[
x2

y2

]
ξ +

[
x3

y3

]
η

maps the triangle K̂ bijectively into K. In fact, if we call this transformation FK , then

FK(p̂α) = pKα , α = 1, 2, 3.

Notice that the second expression we have written for the transformation gives it in terms
of the nodal basis functions in the reference domain. You can think of it as a coincidence.
In a way it is: the coincidence stems from the fact that the type of functions we are using
for finite elements is the same as the functions needed to transform linearly triangles in
the plane.

It is simple now to prove that

N̂α = NK
α ◦ FK , α = 1, 2, 3,

or, what is the same
NK
α = N̂α ◦ F−1

K , α = 1, 2, 3.

The ◦ symbol is used for composition. In the last expression, what we have is

NK
α (x, y) = N̂α(F−1

K (x, y)).

Since computing F−1
K is straightforward from the explicit expression for FK , this formula

gives a simple way of evaluating the functions NK
α . The fact of representing the local

basis for the physical in terms of the basis in the reference configuration, NK
α = N̂α ◦F−1

K ,
is referred to as pushing forward the basis on the reference element2.

To evaluate the gradient of NK
α we have to be more careful, since we have to apply

the chain rule. Let us denote briefly gradients as

∇ =

[
∂x
∂y

]
, ∇̂ =

[
∂ξ
∂η

]
.

(Note that we are writing gradients as column vectors.) The following formula is the
result of applying the chain rule

B>K
(
∇φ ◦ FK

)
= ∇̂(φ ◦ FK).

1Many mesh generators prepare number triangle locally by ordering nodes counterclockwise. This
makes detBK > 0.

2The opposite process, bringing something from the physical element to the reference one, is called
pull-back.

28

B>K is the transpose of the matrix of the linear transformation FK . Taking φ = NK
α in

this expression and moving things a little, we obtain a formula for the gradient of the
local basis functions

∇NK
α = B−>K

(
(∇̂N̂α) ◦ F−1

K

)
.

The expression may look complicated but it is very simple to use. If we want to compute
the value of the gradient of NK

α at a point (x, y) ∈ K, we first compute the transformed

point (ξ, η) = F−1
K (x, y) in the reference triangle, evaluate the gradient of N̂α at this point

and then multiply it by the matrix B−>K , which is the transpose of the inverse of BK , i.e.,

B−>K =
1

det BK

[
y3 − y1 −(y2 − y1)
−(x2 − x1) x2 − x1

]
with

det BK = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)

(remember that | det BK | = 2 areaK). In fact, for this very elementary method, the
gradients of the three basis functions on the reference element are constant vectors

∇̂N̂1 =

[
−1
−1

]
, ∇̂N̂2 =

[
1
0

]
, ∇̂N̂3 =

[
0
1

]
,

so computation of the constant vectors ∇NK
α is very simple, and we don’t even have to

use the inverse transformation F−1
K for the gradients. We do, however, to evaluate NK

α .

1.3 Computing with quadrature rules

Depending on the complications of the problem (we are dealing with a very simple model
problem), all the computations can be carried out to the reference element or we can
try to do things directly on the physical triangle K. Let us mention here two popular
quadrature rules for triangles: the three point rule with the vertices∫

K

φ ≈ areaK

3

(
φ(pK1) + φ(pK2) + φ(pK3)

)
and the midpoints approximation∫

K

φ ≈ areaK

3

(
φ(mK

1) + φ(mK
2) + φ(mK

3)
)
,

where mK
α are the midpoints of the edges of K. If φ is a polynomial of degree one, the

first formula gives the exact value. The second formula is even better: if φ is a polynomial
of degree two, the edge-midpoints formula is exact.

In the very simple case of P1 elements, we have ∇NK
α constant and therefore∫

K

∇NK
β · ∇NK

α = (areaK)∇NK
β · ∇NK

α ,

and this computation is very simple. For the mass matrix, we note that NK
β NK

α is a
polynomial of degree two and therefore, the edge-midpoints formula gives the exact value
of the integrals ∫

K

NK
β NK

α

with just three evaluations of the functions.

29

1.4 Doing everything on the reference element

This section gives another idea on how to compute the local mass and stiffness matrices.
You can skip it without losing continuity and go to Section 1.5. The change of variables
applied to the integral of the local mass matrix gives∫

K

NK
β NK

α = | det BK |
∫
K̂

N̂βN̂α.

Therefore everything is done once we have the 3× 3 matrix

K̂0 =

[∫
K̂

N̂βN̂α

]
α,β

= 1
24

 2 1 1
1 2 1
1 1 2

For derivatives, we have to be more careful∫

K

∇NK
β · ∇NK

α = | det BK |
∫
K̂

(
∇NK

β ◦ FK
)
·
(
∇NK

α ◦ FK
)

=

= | det BK |
∫
K̂

(
B−>K ∇̂N̂β

)
·
(
B−>K ∇̂N̂α

)
=

= | det BK |
∫
K̂

CK∇̂N̂β · ∇̂N̂α

where

CK = B−1
K B−>K =

[
cK11 cK12

cK12 cK22

]
is a symmetric 2×2 matrix that depends only on the triangle. If we compute the following
3× 3 matrices in the reference element

K̂ξξ =

[∫
K̂

∂ξN̂β ∂ξN̂α

]
α,β

= 1
2

 1 −1 0
−1 1 0
0 0 0

K̂ηη =

[∫
K̂

∂ηN̂β ∂ηN̂α

]
α,β

= 1
2

 1 0 −1
0 0 0
−1 0 1

K̂ξη =

[∫
K̂

∂ξN̂β ∂ηN̂α

]
α,β

= 1
2

 1 0 −1
−1 0 1
0 0 0

we have [∫

K

∇NK
β · ∇NK

α

]
α,β

= | det BK |
(
cK11K̂ξξ + cK22K̂ηη + cK12(K̂ξη + K̂>ξη)

)
.

30

1.5 Right-hand sides

Construction of the right-hand side of the linear system requires the computation of two
vectors: ∫

Ω

f ϕi,

∫
ΓN

g1 ϕi.

In principle, this has to be done for indices of free nodes (i ∈ Ind), but in practice what is
done is to compute them for all i and then discard the elements corresponding to Dirichlet
nodes.

The surface forces (source terms) can be treated in a similar way to the stiffness and
mass matrices: ∫

Ω

f ϕi =
∑
K

∫
K

f ϕi.

For each triangle K we compute the vector∫
K

f NK
α , α = 1, 2, 3

and then add these elements in the positions (n1, n2, n3) of the full vector. This process
can be done at the same time as the matrix assembly, since it goes triangle by triangle.
For the P1 element, the following extremely simple approximation is enough:∫

K

f NK
α ≈ 1

3

3∑
β=1

f(pKβ)

∫
K

NK
α =

| det BK |
3

3∑
β=1

f(pKβ)

∫
K̂

N̂α

=
| det BK |

18

3∑
β=1

f(pKβ).

A simpler options is ∫
K

f NK
α ≈ f(bK)

∫
K

NK
α = f(bK)

| det BK |
6

,

where

bk =
1

3
(pK1 + pK2 + pK3)

is the barycenter of K. (This second option is wiser when f has discontinuities that are
captured by the triangulation, that is, when f is allowed to have jumps across element
interfaces.)

The three integrals related to the element K are approximated by the same number.
We have actually approximated f by a function that is constant over each triangle: the
constant value on the triangle is the average of the values on its vertices (or its value at
the barycenter). Otherwise, we can try a quadrature rule to approximate the integrals.
It is important at this stage to note that the choice of an adequate quadrature rule has
to take into account two facts:

• it has to be precise enough not to lose the good properties of the finite element
method, but

31

• it has to be simple enough not to be wasting efforts in computing with high precision
a quantity that is only needed with some precision.

In principle, we could think of using a very precise rule to compute the integrals as exactly
as possible. This is overdoing it and forgetting one of the most important principles of
well-understood scientific computing: errors from different sources have to be balanced.
It doesn’t make much sense to spend time in computing exactly a quantity when that
number is to be used in the middle of many approximate computations.

The presence of Neumann boundary conditions imposes the computation of the fol-
lowing integrals ∫

ΓN

g1 ϕi.

This process is made separately to the ones of computing domain integrals for the matrices
and the source terms. First of all we have to decompose the Neumann boundary in the
set of edges that lie on it (for that we will need a numbering of the Neumann edges):∫

ΓN

g1 ϕi =
∑
L

∫
L

g1 ϕi.

Note first that unless pi is on the Neumann boundary, this integral vanishes.
Next, for each edge consider the two vertices that delimit it: pL1 and pL2 . As we had

with triangular elements, we will need the relation between the extremal points of each
Neumann edge and the global numbering. If

pL1 = (x1, y1), pL2 = (x2, y2),

the function

[0, 1] 3 t 7−→ φL(t) = (1− t)
[
x1

y1

]
+ t

[
x2

y2

]
is a parameterization of the segment L. We now consider the following two functions

ψ1 = 1− t, ψ2 = t.

They are just the nodal basis functions on the reference element [0, 1] for the space of
linear polynomials in one dimension. It is simple to see that

(ϕi ◦ φL)(t) =

ψ1(t), if pi = pL1 ,
ψ2(t), if pi = pL2 ,
0, otherwise.

The integrals to be computed are∫
L

g1ϕnα = lengthL

∫ 1

0

(g1 ◦ φL)(t)ψα(t)dt, α = 1, 2

(as before nα denotes the global index for the local node α). We can the use numerical
quadrature for this line integral. Alternatively we can approximate∫

L

g1 ϕnα ≈ g1(mL)

∫
L

ϕi =
lengthL

2
g1(mL), α = 1, 2,

where mL = 1
2
(pL1 + pL2) is the midpoint of L.

32

6

5

4

3

2
1

Figure 2.5: A numbering of Neumann edges/elements.

2

1

L

local global
1 ↔ 10
2 ↔ 5

Figure 2.6: The 2nd Neumann edge and its numberings. For this edge, n1 = 10 and
n2 = 5. It is common to number boundary edges positively from the point of view of
the interior domain, that is, when going from the first node to the second, we leave the
interior domain to the left.

2 A taste of the theory

2.1 Abstract frame

Because many of the ideas that we will develop on and on in this course are quite inde-
pendent from the particular problem, let us rewrite everything in a slightly more abstract
language. We have two spaces,

V = H1(Ω) and V0 = H1
ΓD

(Ω),

a bilinear form (related only to the partial differential operator)

a(u, v) =

∫
Ω

∇u · ∇v + c

∫
Ω

u v

and a linear form where most of the data appear

`(v) =

∫
Ω

f v +

∫
ΓN

g1 v.

33

Finally there is a linear operator γ that serves us to describe the essential conditions: for
us γu is the value of u on the boundary ΓD. Notice that

V0 = {v ∈ V : γv = 0}.

The problem admits then this simple form
find u ∈ V such that

γu = g0,

a(u, v) = `(v) ∀v ∈ V0

.

Only when g0 = 0 (or when there’s no ΓD and the whole boundary is a Neumann bound-
ary), the problem reduces to an even simpler one[

find u ∈ V0 such that

a(u, v) = `(v) ∀v ∈ V0.

Therefore, when the essential condition is homogeneous (or when there is no essential
condition), the set where we look for u and the test space are the same. In other cases,
the restriction imposed to the tests v is the homogeneous version of the essential condition.

2.2 Well-posedness

Let us recall that the natural norm in our space V = H1(Ω) was

‖u‖ = ‖u‖1,Ω =

(∫
Ω

|∇u|2 +

∫
Ω

|u|2
)1/2

.

There are several conditions that ensure the well-posedness of the problem
find u ∈ V such that

γu = g0,

a(u, v) = `(v) ∀v ∈ V0,

or of its homogeneous version (g0 = 0)[
find u ∈ V0 such that

a(u, v) = `(v) ∀v ∈ V0.

Well-posedness means existence and uniqueness of solution and continuity of the solu-
tion with respect to the data.

Let us first list the properties that are satisfied in all the situations we are addressing
in this course:

34

• V is a Hilbert space (a vector space, with an inner product so that the space is
complete with respect to the associate norm)3,

• V0 is a closed subspace of V ,

• the bilinear form a is continuous in V , that is, there exists M > 0 such that

|a(u, v)| ≤M‖u‖ ‖v‖, ∀u, v ∈ V,

• the linear form ` is continuous

|`(v)| ≤ C`‖v‖, ∀v ∈ V.

As already mentioned, all of these properties are satisfied in our case. In fact

C2
` ≤

∫
Ω

|f |2 + CΩ

∫
ΓN

|g1|2.

There is a last property, called ellipticity or coercivity, which reads: there exists α > 0
such that

a(v, v) ≥ α‖v‖2, ∀v ∈ V0.

Note that the property is only demanded on the set V0. In our case it is not satisfied in
all situations. In fact, it is satisfied in all but one case:

• if c > 0 the property is satisfied with α depending only on c,

• if c = 0 and length ΓD > 0, the property is satisfied with α depending on Ω and on
the partition of the boundary in Dirichlet and Neumann parts.

If all the properties mentioned above hold, then the problem[
find u ∈ V0 such that

a(u, v) = `(v) ∀v ∈ V0,

has a unique solution and
‖u‖ ≤ C`/α.

If g0 6= 0 then the problem
find u ∈ V such that

γu = g0,

a(u, v) = `(v) ∀v ∈ V0,

has a unique solution if there exists a u0 ∈ V such that γu0 = g0. In that case, the
continuity of the solution with respect to the data has a more complicated expression

‖u‖ ≤ C`/α + (M/α + 1) inf
{
‖u0‖ : γu0 = g

}
.

3Maybe this sentence looks too hard. You should know what a vector space and also what an inner
(or scalar) product is. When you have an inner product, you have an associated norm and with it a
concept of convergence of sequences of elements of V . Completeness is a property that ensures that all
Cauchy sequences have a limit. In essence, it means that convergence has to happen inside the space.
We cannot have a sequence of elements of V converging to something that is not in V .

35

Remark. For the pure Neumann problem with c = 0[
−∆u = f in Ω,

∂nu = g1 on Γ,

we cannot verify the conditions to prove existence and uniqueness. In fact, existence is
not guaranteed and we never have uniqueness. First of all, because of the divergence
theorem we must have ∫

Ω

∆u =

∫
Ω

div(∇u) =

∫
Γ

∂nu

and therefore the data have to satisfy the compatibility condition∫
Ω

f +

∫
Γ

g1 = 0.

If this condition is satisfied, there is more that one solution, since constant functions
satisfy the problem [

−∆u = 0 in Ω,

∂nu = 0 on Γ.

2.3 Galerkin methods

A Galerkin method for the problem[
find u ∈ V0 such that

a(u, v) = `(v) ∀v ∈ V0,

consists of the choice of a finite dimensional space

V 0
h ⊂ V0

and on the consideration of the discrete problem[
find uh ∈ V 0

h such that

a(uh, vh) = `(vh) ∀vh ∈ V 0
h .

The P1 finite element method for the reaction-diffusion problem with homogeneous Dirich-
let conditions is therefore an example of Galerkin method4.

The Galerkin equations are equivalent to a linear system. Let us do here the detailed
argument, although you will see that we already did exactly this in Section 3 of the
previous lesson.

4Galerkin comes from Boris Galerkin. A good pronunciation of the word would be something more
like Galyorkin, with emphasis on the lyor syllable. Most English speakers pronounce it however as if it
were an English word.

36

First we need a basis of V 0
h : {ϕi : i ∈ Ind}. The index set Ind is now anything you

want to use in order to number the finite basis of the set. In general we would number
form one to the dimension of the space, but in our model problem the numbering proceeds
from eliminating some indices from a wider numbering. Then we notice that the abstract
set of equations

a(uh, vh) = `(vh) ∀vh ∈ V 0
h

is equivalent to
a(uh, ϕi) = `(ϕi) ∀i ∈ Ind.

Finally, we decompose

uh =
∑
j∈Ind

ujϕj

and substitute this expression above to obtain the linear system∑
j∈Ind

a(ϕj, ϕi)uj = `(ϕi), i ∈ Ind.

There are as many unknowns as there are equations here. In this abstract setting, the
values uj are not nodal values, since an arbitrary basis of a linear space has nothing to
do with nodes or evaluations of functions.

If the hypotheses of Section 2.2 hold, this system has a unique solution. Furthermore
we have the following result, which is popularly referred to as Céa’s Lemma5:

‖u− uh‖ ≤
M

α
inf
{
‖u− vh‖ : vh ∈ V 0

h

}
.

The result might not seem to say much at first sight. There are however some aspects
that have to be remarked here:

• The result gives an upper bound of the error between the exact solution u and
the approximate solution uh (the finite element solution) and this error bound is
measured in the energy norm and not in any other one.

• The term
inf
{
‖u− vh‖ : vh ∈ V 0

h

}
is just an approximation error, completely unrelated to the original problem. It
measures how well the (unknown) exact solution can be approximated by elements
of the space where we are looking for the solution. Because of how this term is
estimated in particular situations (in FEM, for instance) many people call this
an interpolation error. We will see a bit of this in the following section. This
approximation error is measured also in the energy norm, of course6.

5Céa, as in Jean Céa. French. Do you best with the pronunciation of the name.
6There’s a well-established tradition to keep the infimium in the right-hand side of Céa’s estimate.

The infimum is actually a minimum, as guaranteed by elementary functional analysis arguments. Céa’s
estimate is also called the quasioptimality of the Galerkin method.

37

• The only other constants in the inequality depend on the problem, but not on data.
Note however that complicated solutions (solutions that vary a lot, or that have
large gradients, or anything you can think of as difficult to grasp with a simple
approximation) will not necessarily be approximated as well as simple smooth solu-
tions. Since we do not know the solution (by definition, it is the unknown), how can
we have an idea of this error? The answer is the lifetime work of numerical analysts
and computational scientists. Just three ideas:

– for simple smooth solutions, numerical analysis shows usually how error be-
haves quite precisely, which gives us a hint of the best possible behavior of our
method;

– PDE theory sometimes helps in understanding where things can go wrong and
we can do some effort in concentrating approximation in that area;

– finally, there is a whole new (new as in only thirty years old or so) branch
of computational knowledge related to error estimation and adaptivity, allow-
ing you to improve your computations with information you harvest from the
already performed computations.

The theoretical frame for the case with non-homogeneous Dirichlet conditions is somewhat
more delicate, because we have to go someplace more abstract to write correctly the
approximation of the condition

u = g0 on ΓD

by
uh(p) = g0(p) ∀p Dirichlet node,

without making any use of the particularities of the finite element space P1. This can be
done in several ways, and we are not going to detail them. Particularized to FEM the
result will look like this

‖u− uh‖ ≤ (1 +
M

α
) inf

{
‖u− vh‖ : vh ∈ Vh, vh(p) = g0(p) ∀p Dirichlet node

}
.

Note that the approximation error in the right-hand side includes the imposition of the
discrete essential boundary condition.

2.4 Convergence of the P1 finite element method

How does all of this work for the P1 finite element? Let us go back to the case with
homogeneous boundary conditions. As mentioned, the error can be bounded as

‖u− uh‖1,Ω ≤
M

α
inf
{
‖u− vh‖1,Ω : vh ∈ V 0

h

}
.

Let us emphasize again that the norm for measuring the error is imposed by the problem
(see Section 2.1). Assume now that u is a well-behaved function. For example, that
it is continuous. Then we can construct a function πhu by taking nodal values of u
on the vertices of the triangulation and creating with them an element of Vh. This

38

is, obviously, interpolation in Vh, that is, interpolation with continuous piecewise linear
functions. Because of the Dirichlet boundary condition u vanishes on Dirichlet nodes, and
so does consequently πhu. Therefore πhu ∈ V 0

h and we can use the bound

‖u− uh‖1,Ω ≤
M

α
‖u− πhu‖1,Ω.

We have therefore bounded the error of the finite element method by the error of in-
terpolation of the exact solution in the finite element space. A nice thing about this
interpolation process is the fact that it is done triangle-by-triangle, so actually, the global
error for interpolation is the sum of the errors that we have done element-by-element.

In basic courses on numerical methods you will have seen that it is possible to estimate
the error of interpolation without knowing the solution, but that this bound of the error
is proportional to some quantity depending on a high order derivative of the function
that is interpolated. You will have seen this in one space dimension. In several space
dimensions, it is a bit more difficult but not so much. The result is the following: there
exists a constant C that depends on the minimum angle of the triangulation such that

‖u− πhu‖1,Ω ≤ Ch
(∫

Ω

|∂xxu|2 + |∂xyu|2 + |∂yyu|2
)1/2

,

where h is the size of the longest edge of the triangulation. The expression on the right-
hand side is an example of a Sobolev seminorm. It is denoted usually as

|u|2,Ω =
(∫

Ω

|∂xxu|2 + |∂xyu|2 + |∂yyu|2
)1/2

.

The whole bound is
‖u− uh‖1,Ω ≤ C ′h|u|2,Ω

with the constant C ′ depending on the coefficients of the problem, on the geometry of the
physical setting and on the smallest angle. If the triangles are very flat (the ratio between
the longest edge and the inradius7 is very small), the constant gets to be very large.

First of all, let us remark that the error bound requires the second derivatives of the
solution to be square-integrable, which is not always the case. Second, note that if u is a
polynomial of degree one, this error bound is zero and uh is exactly u. You can use this as
a way of constructing exact solutions to validate your own coding of the method. Third,
the fact that the bound is proportional to h makes the method a method of order one.
This means that if you make the longest edge half its size, you should only expect the
error to be divided by two. Be aware that the argument on error decrease is done on the
bound, since the error itself is unknown. In fact the error could decrease much faster, but
in principle you should not expect this to happen.

3 Quadratic elements

Its very low order makes the P1 method not very attractive. Just to expect having an
additional digit in precision you should have edges ten times shorter, which amounts to

7Inradius is the geometric term for the radius of the inscribed circumference.

39

increasing dramatically the number of unknowns. Instead, it is often recommended to use
a higher order method, which is exactly what we are going to do right now.

3.1 Local and global descriptions

Let us consider the space of polynomials in two variables with degree at most two

P2 =
{
a0 + a1 x+ a2 y + a2 x

2 + a4 y
2 + a5 x y : a0, . . . , a5 ∈ R

}
.

An element of P2 is determined by six independent parameters (the quantities ai), that
is, the space P2 has dimension equal to six. Let us take a triangle K and let us mark six
points as nodes:

• the three vertices of the triangle,

• the midpoints of the three edges.

The following result is easy to prove: a function in P2 is uniquely determined by its values
on the six nodes of the triangle. Take now two points p1 and p2. The function

[0, 1] 3 t 7−→ (1− t) p1 + tp2

parameterizes linearly the segment between these two points. If p ∈ P2, then a simple
computation shows that

p((1− t)p1 + tp2) ∈ P2(t) =
{
b0 + b1 t+ b2 t

2 : b0, b1, b2 ∈ R
}
,

that is, seen on any segment (on any straight line actually), an element of P2 is a parabolic
function, which, as everyone knows, is determined by three different points. Therefore
the value of a function in P2 on an edge of the triangle is uniquely determined by its three
values on the nodes that lie on that edge (two vertices and one midpoint).

Figure 2.7: The nodes (local degrees of freedom) of a P2 triangle.

Because of this last property, we can glue together two P2 triangles as we did in the
P1 case. Take a triangulation in the usual conditions, fix values of a function in all the
nodes (vertices and midpoints) and on each triangle construct the only function in P2

40

that matches the given values. The resulting function is continuous. In fact it is a general
element of the space

Vh =
{
uh ∈ C(Ω) : uh|K ∈ P2, ∀K ∈ Th

}
.

All the arguments presented in Lesson 1 hold also here. The dimension of this space is

dimVh = #{vertices}+ #{edges},

since there is one midpoint per edge.
As before, we give a global numbering to the set of nodes (vertices and midpoints of

edges): {p1, . . . ,pN} and construct the functions ϕi ∈ Vh satisfying

ϕi(pj) = δij =

{
1, j = i,
0, j 6= i.

For the same reasons as in the P1 case, these functions constitute a basis of Vh and any
function of this space can be expressed as

uh =
N∑
j=1

uh(pj)ϕj.

There are two types of basis functions now:

• those associated to vertices, whose support is the set of triangles surrounding the
vertex,

• those associated to midpoints, whose support is the set of two triangles (only one if
the edge is on the boundary) that share the edge.

Take the usual triangulation and make yourself some drawing of the form of the supports
of the nodal basis functions.

The concept of a Dirichlet node is the same: it is any node on a Dirichlet edge,
Dirichlet edges being edges on the Dirichlet boundary ΓD. The following result is then a
straightforward consequence of the fact that value on edges is determined by degrees of
freedom on edges:

vh ∈ Vh vanishes on ΓD if and only if it vanishes on all Dirichlet nodes.

Therefore, it is very simple to construct a basis of

V ΓD
h = Vh ∩H1

ΓD
(Ω) = {vh ∈ Vh : vh = 0 on ΓD}

by simply ignoring nodal basis functions ϕi associated to Dirichlet nodes. Can you notice
that I am copy-pasting formulas from Lesson 1?

Very important. The whole of Section 3 in Lesson 1 can be read with these adapted
concepts. There’s nothing new at all, but the different concepts of local spaces and nodes.
You should have a detailed look again at that section to convince yourself that this is so.
In particular pay attention to mass and stiffness matrices and note that the number of
adjacent nodes for each node is increased with respect to P1 triangles (we will explore this
in an exercise).

41

Bookkeeping for quadratic elements. Counting local and global degrees of freedom
on quadratic elements gets us into a new world of (minor) difficulties. So far we had the
lists of vertices of the triangulation, and the lists of elements. For quadratic elements,
we need to number the edges of the triangulation. This is a list of what vertices of the
triangulation are the vertices surrounding each of the edges. This list gives an automatic
numbering of the midpoints of the edges, which are nodes in the P2 elements. We can
then consider that the list of all nodes is built as follows:

• first all the vertices,

• then all the (midpoints of) the edges.

With this numbering, the degrees of freedom corresponding to the midpoints of the edges
come at the end. We also have to relate the local and the global lists. This can be easily
done with yet another list: we now produce the list of the three edges (global numbering)
for each of the elements. (We can typically think that the first edge is the opposed to the
first vertex, etc.) At the time of the assembly, the indices referred to vertices are taken
from the list of elements, and the indices referred to midpoints are taken from the list of
edges, adding the number of vertices, so that it is correlative.

3.2 The reference element

If we want to implement the P2 we need to compute the usual integrals for the mass and
stiffness matrices (an also, of course, the right-hand sides, that include the influence of
data). For that, we need a way of evaluating the nodal basis functions on each triangle.

Since the argument is, again, exactly the same as for the P1 element, let us work now
in the opposite sense. In the reference triangle we mark the six nodes as shown in Figure
2.8. As usual (ξ, η) are the coordinates in the reference configuration.

K
^

1

3

2

4

6

5

Figure 2.8: The P2 reference triangle.

Each of the functions

N̂1 = (1− ξ − η)(1− 2ξ − 2η), N̂2 = ξ(2ξ − 1), N̂3 = η(2η − 1)

N̂4 = 4ξη, N̂5 = 4η(1− ξ − η), N̂6 = 4ξ(1− ξ − η)

42

takes the unit value on the corresponding node (the one numbered with the subindex)
and vanishes in all other five nodes.

Let’s do again some copy–pasting. The functions

NK
α = N̂α ◦ F−1

K , α = 1, . . . , 6

have the same property as the N̂α functions, only on the triangle K, that is mapped from
K̂ via the linear transformation FK . These functions are polynomials of degree two (do
you see why?) and therefore

NK
α = ϕnα , in K

where nα is the global index corresponding to the local node α in K. Here is again the
formula for the gradient

∇NK
α = B−>K

(
(∇̂N̂α) ◦ F−1

K

)
.

Note that now ∇̂N̂α is not constant, so the inverse transformation F−1
K is needed also to

evaluate the gradient.
We then compute the local matrices, which are 6× 6 matrices,∫

K

∇NK
β · ∇NK

α and

∫
K

NK
β NK

α ,

put the elements in the global positions∫
K

∇ϕnβ · ∇ϕnβ and

∫
K

ϕnβ ϕnα

and add the contributions of all triangles to assemble the full stiffness and mass matrices.

3.3 Convergence

The general error bound

‖u− uh‖1,Ω ≤ (1 +
M

α
) inf

{
‖u− vh‖1,Ω : vh ∈ Vh, vh(p) = g0(p) ∀p Dirichlet node

}
.

still holds here. In the case of homogeneous Dirichlet conditions, we can use the same
arguments as in the preceding section to obtain a full bound like

‖u− uh‖1,Ω ≤ Ch2|u|3,Ω,

where:

• the constant C depends on the PDE operator, on the geometry and on the smallest
angle (becoming worse as the triangles become flatter)

• the new Sobolev seminorm |u|3,Ω uses the third order partial derivatives of u.

The result is valid only when this last seminorm is finite, which is much more to require
than what we had at the beginning. Note that the order two in energy norm (H1(Ω)
norm) is good news, since using smaller triangles really pays off and the gain of precision
is due to be much faster than in the P1 case. In the final exercise of this section we will
explore what’s the price to be paid (there’s no free lunch, you know).

43

4 Cubic elements and static condensation

4.1 The P3 element

Can we do better than order two? The answer is yes, and besides, it is easy to do better.
We will just give some hints on the order three case, because something new appears and
we really want to deal with new ideas instead of doing the same thing over and over. Look

Figure 2.9: The P3 triangle

first at Figure 2.9. There are ten nodes in the triangle:

• the three vertices,

• two points per side, at relative distances 1/3 and 2/3 from the vertices,

• the barycenter, which is computed by averaging the coordinates of the three vertices

1
3
vK1 + 1

3
vK2 + 1

3
vK3 .

Note also that each edge has four nodes on it. The local space is that of polynomials of
degree up to three P3. Instead of writing a general element of this space, let us list the
monomials that are used:

1

x y

x2 xy y2

x3 x2y xy2 y3

Count them. Ten monomials (i.e., ten coefficients) and ten nodes. Well, that’s a surprise!
Two other surprises:

• a function in P3 is uniquely determined by its values on the ten nodes of the triangle,

• the value of a function in P3 on an edge of the triangle is uniquely determined by
its four values on the nodes that lie on that edge.

44

Note that a P3 function restricted to a segment (straight line) is a cubic function of one
variable.

We are almost done here. We can construct the spaces Vh, the nodal basis functions
ϕi, the subspace V ΓD

h by eliminating Dirichlet nodes, etc. The dimension of Vh is

#{vertices}+ 2 #{edges}+ #{triangles}.

4.2 Static condensation

There is however a new entity here, and that’s the very isolated interior node. I say
isolated because that node is only adjacent to the other nodes of the same triangle. This
has some consequences at the practical level that we are going to explore right now.

Let ϕi be the nodal basis function associated to a node that is the barycenter of the
triangle K. Then suppϕi = K. Therefore

a(ϕj, ϕi) =

∫
K

∇ϕj · ∇ϕi + c

∫
K

ϕj ϕi ∀j,

and

`(ϕi) =

∫
K

f ϕi

(do you see why there is no Neumann term here?) which means that once we have gone
through the element K in the assembly process, we will have finished the i-th row of the
system, with no contributions from other elements. The idea of static condensation is
simple: get rid of that equation and unknown in the same process of assembly.

Let us consider that the 0-th node is the barycenter of K. Let KK and bK be the
local matrix and right–hand side contributions from the triangle K

kKαβ =

∫
K

∇NK
β · ∇NK

α + c

∫
K

NK
β NK

α , bKα =

∫
K

f NK
α , α, β = 0, . . . , 9.

Now we decompose the matrix and the vector into blocks, separating the contribution
from the interior node from all others:[

KK
00 KK

01

KK
10 KK

11

]
,

[
bK0

bK1

]
,

with
KK

00 =
[
kK0,0

]
, KK

01 =
[
kK0,1 . . . kK0,9

]
, bK0 =

[
bK0
]

KK
10 =

kK1,0

...

kK9,0

 , KK
11 =

kK1,1 . . . kK1,9

...
...

kK9,1 . . . kK9,9

 , bK1 =

bK1

...

bK9

 .
You will be wondering why are we calling matrices to blocks 1 × 1 (scalars) and 1 × 9
or 9× 1 (row or column vectors). The reason is twofold: first, the role these scalars and
vectors are playing are the ones of blocks in a matrix so we’d better use block notation,

45

independent of their shape; second, we will thus be able to recycle all that comes right
now for more complicated situations.

The (ten) equations related to the nodes of the element K are

KK
00u

K
0 + KK

01u
K
1 = bK0 ,

KK
10u

K
0 + (KK

11 + A)uK1 + Buother = bK1 + b.

The unknowns are separated in the same blocks (1 plus 9) and are denoted with local
numbering, that is uK0 is the unknown associate to the barycenter of K and uK1 is the
column vector of the nine unknowns associated to all the other nodes on K.

• The matrix A includes all contributions from other elements to nodes of K. It will
be added in the assembly process when we go through these elements.

• The block B includes all contributions from other triangles to other unknowns
(generically written as uother), that is, unknowns on nodes that are not on K but
are adjacent to those on K.

• Finally, b includes all contributions from other triangles and possibly also from
Neumann edges, to the right-hand side.

Now we can write uK0 (which, in this case, is just the unknown corresponding to the
barycenter of K) as

uK0 =
(
KK

00

)−1
bK0 −

(
KK

00

)−1
KK

01u
K
1

and substitute this expression in the block of the remaining equations for the triangle K
(the non–interior unknowns), obtaining(

KK
11 −KK

10

(
KK

00

)−1
KK

01 + A
)

uK1 + Buother = bK1 −KK
10

(
KK

00

)−1
bK0 + b

This means that instead of assembling the full (10×10) block from K and its correspond-
ing right–hand side, we can forget about the interior nodes (just one) on condition of
assembling

KK
cond = KK

11 −KK
10

(
KK

00

)−1
KK

01, bKcond = bK1 −KK
10

(
KK

00

)−1
bK0

instead of the original matrix. Once we have solved the system, the interior variables are
solved using the local equations

KK
00u

K
0 + KK

01u
K
1 = bK0 ,

that work element–by–element.

Remark. This is a method for implementing the P3 FEM in a way that the information
of the interior nodes is incorporated to the assembly process directly without having to
use the corresponding unknown. This doesn’t mean that the node is not there. We only
compute it separately after having added its contribution to assembly directly. So don’t

46

confuse this, which is nothing else than an implementation trick, with some finite elements
(in the class of the so-called exotic or serendipity elements) that avoid interior nodes.

Maybe I’ve left you wondering about that strange Algebra in the assembly process
and it somehow rings a bell. It should. Write the extended matrix[

KK
00 KK

01 bK0

KK
10 KK

11 bK1

]

and apply Gaussian block elimination (the KK
00 block is just 1 × 1, so this is just Gauss

elimination) you obtain[
KK

00 KK
01 bK0

0 KK
11 −KK

10

(
KK

00

)−1
KK

01 bK1 −KK
10

(
KK

00

)−1
bK0

]
.

Ta daaaa! There they are. The blocks you wanted. Again, our diagonal block was a
scalar, so this was easy. What would have happened if it was a matrix? Do you have to
compute that inverse and apply all that Algebra? No, you don’t. Gauss block elimination
is a nice way of writing the result of Gauss elimination. The point is you apply row
elimination to create all those zeros, with no row changes and without trying to create
any other zeros. Blocks of the form

KK
11 −KK

10

(
KK

00

)−1
KK

01

are called Schur complements. If the original matrix is symmetric and positive definite,
they are still symmetric and positive definite.

4.3 Convergence, P4 and higher

We haven’t mentioned convergence of the P3 method yet. In the best possible conditions,
this is a method of order three in the H1(Ω) Sobolev norm:

‖u− uh‖1,Ω ≤ Ch3|u|4,Ω

(can you guess what’s in |u|4,Ω?). These best possible conditions include the fact that
triangles do not become too flat, since the constant C becomes worse and worse as triangles
get flatter and flatter. Note that if you apply static condensation to the P3 you complicate
the assembly process but you end up with a system of order

#{vertices}+ 2 #{edges}

(minus the number of Dirichlet nodes), which is smaller than the one you obtain without
condensation. There is an additional advantage of applying condensation. With the usual
information of a grid generator (you will have to read the Appendix for that) you can
easily construct a coherent numbering including vertices and edges, which works for P2

elements. Going from P2 to P3 means that you have to double the number of unknowns
per edge (which is easy) and add the triangles. The numbering of triangles becomes then

47

relevant. It is not, I insist, for the assembly process. If you apply static condensation,
you avoid the unknowns related to barycenter and the numbering of vertices-and-edges is
enough for the P3 element.

The P4 element is constructed easily following these lines:

• You divide each edge into five equally sized pieces. Then you join these new points
on different sides with lines that run parallel to the edges. With that you have
created a grid of 15 nodes: three vertices, three points per edge, three interior
points, placed on the intersections of the interior lines.

• The space is P4, which has dimension 15. Everything goes on as usual.

• The three interior nodes can be treated with static condensation: the KK
00 blocks

are now 3× 3 blocks. With this you reduce in three times the number of triangles
the size of the global system to be solved without affecting convergence.

• Order of the method is.... four! (That was easy)

It is possible to create Pk methods for arbitrary k. You will find people around that will
assert that these methods are useless or just of theoretical interest. Be warned: maybe
they find them useless, but some other people work with really high order methods and
find many advantages in them8. However, if you go from P4 upwards, you implement the
method in a very different way. Nodal bases are not the best choice in that case and there
is a different way of constructing node-free bases. We will deal with this in Lesson 7.

5 Exercises

1. Basis functions for the P2 element. Try to sketch the form of the nodal basis
functions for a P2 finite element space (similar as Figure 1.8). Note that there are
two different types of functions, those associated to vertices and those associated to
midpoints of edges.

2. The plane elasticity system. The problem of plane deformations in linear elas-
ticity can be reduced to the variational problem:9

find u1, u2 ∈ H1(Ω) such that

u1 = gx, u2 = gy on ΓD,∫
Ω

(
(λ+ 2µ)

∂u1

∂x
+ λ

∂u2

∂y

)∂v
∂x

+ µ
(∂u1

∂y
+
∂u2

∂x

)∂v
∂y

=

∫
Ω

v fx +

∫
ΓN

v tx ∀v ∈ H1
ΓD

(Ω),∫
Ω

µ
(∂u1

∂y
+
∂u2

∂x

)∂v
∂x

+
(
λ
∂u1

∂x
+ (λ+ 2µ)

∂u2

∂y

)∂v
∂y

=

∫
Ω

v fy +

∫
ΓN

v ty ∀v ∈ H1
ΓD

(Ω),

where:
8Be always prepared to find opinionated people in the scientific computing community. Sometimes

they are right, sometimes they are partially right, sometimes they are plain wrong.
9Warning. For reasons that are not so easy to explain as many people think, P1 elements are never

used in elasticity problems because their performance is rather bad. Note that in what you have done
here P1 or Pk is all the same, so you can be applying this to P2 elements, which work well for this problem.

48

• Ω is the plane section of the cylindrical solid

• ΓD is the part of the boundary of Ω where we know displacements g0 = (gx, gy)

• ΓN is the part of the boundary where we know normal stresses t = (tx, ty)

• f = (fx, fy) are the volume forces

• λ and µ = G are the Lamé parameters

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

• H1
ΓD

(Ω) = {v ∈ H1(Ω) : v|ΓD = 0}.

We are given a triangulation Th, the associated P1 nodal basis functions (ϕi), etc.
We call Ind and Dir to the usual index sets. We approximate the pair (u1, u2) by
the discrete functions

u1
h =

∑
j

u1
jϕj, u2

h =
∑
j

u2
jϕj

Alternating tests with the two variational equations, and grouping both unknowns
on the same node (u1

j , u
2
j) prove that the resulting finite element system can be

written in the form∑
j∈Ind

Aij

[
u1
j

u2
j

]
= Fi + Ti −

∑
j∈Dir

Aij

[
g1
j

g2
j

]
, i ∈ Ind .

where Aij are 2 × 2 matrices. What’s the dimension of the system? Prove that
A>ij = Aji and deduce that the system is symmetric.

3. Comparison of P1 and P2. Consider the simple triangulation depicted in Figure
2.10

Figure 2.10: A simple triangulation with a marked node

(a) If you consider the Neumann problem there (no Dirichlet nodes), how many
unknowns are there in the system corresponding to the P2 method?

(b) What are the adjacent nodes to the node that is marked on the figure?

49

(c) A red refinement of a triangle consists of taking the midpoints of the edges
and joining them to create four triangles per triangle (see Figure 2.11). If you
apply a red refinement to all the elements of the triangulation above and the
apply the P1 element, how many unknowns do you have in the system? Which
nodes are adjacent to the same marked nodes in this new triangulation for the
P1 method?

(d) Discussion. The error of the P2 method is bounded by something times h2.
The error of the P1 method on the uniform red refinement is something else
times h/2. The constant (the unspecified something) for each case is different.
In principle, when the triangulation is fine enough h2 wins over h/2 (it is
smaller). With the same number of unknowns one method is better than the
other. Where’s the difference?

Figure 2.11: A red refinement of a triangle

4. Bookkeeping for P2 elements. Consider the triangulation given in Figure 2.10.

(a) Number vertices, edges, and elements. Construct all the lists that you would
need to use P2 FEM:

• the list of vertices for each element,

• the list of vertices for each edge,

• the list of edges for each element.

For the list of vertices for each edge, choose always a positive orientation for
boundary edges. This means that if you go from the first edge to the second,
you are leaving the exterior domain to the right.

(b) Additionally, build a matrix (list) with the same shape as the one of edges-
counted-by-element where you specify if the orientation of the edge: positive
or negative. This means the following. If the first edge of an element connects
the nodes n1 and n2 in the element (counting counterclockwise) and the edge
is listed as n1 going to n2 you assign a + sign. If the edge is listed as n2 going
to n1, you assign a minus sign.

50

(c) Using the above information, choose one element, and say where you would
assemble a local mass matrix in the global matrix.

51

Lesson 3

New classes of elements

1 The lowest order element on parallelograms

Sometimes dividing a domain into triangles is not the best idea. Some domains, such as
rectangles, are much better subdivided into smaller rectangles. Also sometimes triangu-
lations become really messy. For instance Figure 3.1 shows a typical triangular grid of a
rectangle as produced by the PDE Toolbox of Matlab. Because of the way these triangu-
lations are produced, working from the boundary to the interior and avoiding very acute
angles, they display a very disorganized and non-symmetric pattern. If your problem
favors directions, maybe this is not the best way to begin your discretization.

Figure 3.1: A typical triangular grid of a rectangle.

We are going to introduce here finite elements on rectangles and parallelograms. These
elements share many features with finite elements on triangles, but there are plenty of
novelties. To learn about finite elements on arbitrary quadrilaterals (trapezes and trape-
zoids) you will have to wait to Lesson 4. They constitute a different species and have to
be studied later on to grasp their difficulties.

52

1.1 The reference space

First of all we need a new polynomial space, which we are going to introduce in reference
variables,

Q1 =
{
a0 + a1ξ + a2η + a3ξ η : a0, a1, a2, a3 ∈ R

}
.

These are polynomials in two variables that are of degree at most one in each variable
separately. Note that this space contains P1. The reference square K̂ is going to be the
one with vertices on

p̂1 = (−1,−1), p̂2 = (1,−1), p̂3 = (1, 1), p̂4 = (−1, 1),

that is K̂ = [−1, 1] × [−1, 1]. Note that many books prefer to take the unit square
[0, 1]× [0, 1] as reference element. Some details change if this choice is made1. This is not
so important. Note that I have chosen to number the vertices in rotating order. Whether
we do this in this way (rotating clockwise or counter-clockwise is immaterial) or in a
different way is relevant and we have to be very careful with this. Unlike what happens
with triangles, here we really have to know what points are vertices of each edge and we
need to fix an order to say that.

η

ξ

 p
1 p

2

 p
3

 p
4

^

^^

^

Figure 3.2: The reference square.

Restricted to a horizontal line (η constant) or to a vertical line (ξ constant), functions
of Q1 are polynomials of degree one, that is, seen on horizontal or vertical lines, functions
of Q1 are linear functions. They are however not linear functions (flat plane functions),
because of the crossed product ξ η.

Two simple observations, in the line of what we have been doing for triangles:

• the value of an element of Q1 is uniquely determined by its values on the four vertices
of K̂,

• the value of an element of Q1 on each of the four sides of K̂ is uniquely determined
by the value on the extreme points of that side.

1In a way, I’m mixing choices in this course, because I chose the unit reference triangle in a form and
the reference square in another form.

53

As usual, we can construct functions N̂α ∈ Q1 such that

N̂α(p̂β) = δαβ, α, β = 1, . . . , 4.

These functions are

N̂1 = 1
4
(1− ξ)(1− η), N̂2 = 1

4
(1 + ξ)(1− η),

N̂3 = 1
4
(1 + ξ)(1 + η), N̂4 = 1

4
(1− ξ)(1 + η).

The nice joint formula 1
4
(1±ξ)(1±η) for the whole set justifies the choice of this reference

square over [0, 1]× [0, 1].

1.2 The local spaces

Take now a parallelogram K and write its four vertices in rotating order (clockwise or
counter-clockwise, it doesn’t matter)

pKα = (xα, yα), α = 1, . . . , 4.

Consider now a linear map that transforms K̂ into K. For instance, this one does the
job: [

x

y

]
= −1

2
(ξ + η)

[
x1

y1

]
+

1

2
(1 + ξ)

[
x2

y2

]
+

1

2
(1 + η)

[
x4

y4

]
.

η

ξ

x

y

 p
1

 p
2

 p
3

 p
4

^ ^

^^

 p
1

 p
2

 p
3

 p
4

 F
K

 K

 K̂

Figure 3.3: The reference square K̂ is mapped to the physical domain K. Note that
vertices are notated in rotating order, even if the sense is different.

If we had taken before the reference triangle with vertices on p̂1, p̂2 and p̂4, the P1

basis functions we would had found would have been

−1
2
(ξ + η), 1

2
(1 + ξ), 1

2
(1 + η).

54

What we are doing is mapping this triangle into the triangle with vertices p1, p2 and p4.
The additional point p̂3 is mapped automatically to p3, because K is a parallelogram and
linear transformations preserve parallelism. Let’s not worry about the explicit formula
for the transformation. We’ll call it FK : K̂ → K and write simply[

x

y

]
= BK

[
ξ

η

]
+ bK .

or (x, y) = FK(ξ, η). We finally get to the local polynomial space

Q1(K) = {q : K → R : q ◦ FK ∈ Q1}
= {q̂ ◦ F−1

K : q̂ ∈ Q1}.

Note that the space is defined by transforming (pushing forward) the space Q1 on the
reference element to the physical element K. In a way, that happened also with the Pk,
only with the simplicity that in that case

Pk(K) = Pk

and the space in physical and reference variables was the same.
Before giving properties of Q1(K) (we need concepts like local degrees of freedom,

the possibility of gluing together different elements, et cetera), let’s have a look at the
functions in this space. A function in Q1 is of the form

q̂ = a0 + a1 ξ + a2 η + a3 ξ η.

The reference variables can be written in terms of the physical variables by inverting the
transformation FK . We obtain something of the form:[

ξ

η

]
=

[
a b

c d

][
x

y

]
+

[
e

f

]
=

[
a x+ b y + e

c x+ d y + f

]

(the actual numbers a, . . . , f are not important). Therefore

q̂ ◦ F−1
K = a0 + a1(a x+ b y + e) + a2(c x+ d y + f) + a3(a x+ b y + e)(c x+ d y + f)

= b0 + b1 x+ b2 y + a3(a c x2 + b d y2 + (a d+ b c)x y),

which means that functions in Q1(K) have a linear part plus a term of degree two that
depends on the element K (see how the coefficients of F−1

K are there). Actually, it looks

like the space depends on the transformation chosen to map K from K̂, but that’s not
so. The following list of facts is of easy verification:

• The space Q1(K) depends only on K, not on the concrete transformation FK we
have chosen. This is an important property, that means that we have not to worry
about the way in which we ordered the vertices of the parallelogram K. We only
need a list in rotating order and nothing else.

55

• If K is a rectangle with sides parallel to the cartesian axes (and in fact, only in this
case), the space Q1(K) is simply Q1.

• In all cases
P1 ⊂ Q1(K) ⊂ P2,

so Q1(K) contains all polynomials of degree at most one and is a space of polyno-
mials of degree at most two. The first part of this property is what will give order
of convergence to the finite element method using this space.

• The space Q1(K) has dimension four. The functions

NK
α = N̂α ◦ F−1

K , α = 1, . . . , 4

form a basis of this space. In fact

NK
α (pKβ) = δαβ, α, β = 1, . . . , 4.

• Restricted to any of the sides of K, a function of Q1(K) is a linear function of one
variable, that is, if pi and pi+1 are two consecutive vertices of K and q ∈ Q1(K),
then

t 3 [0, 1] 7−→ q((1− t)pi + tpi+1) ∈ P1(t) = {a+ b t : a, b ∈ R}.

From the last two bullet points of this list we easily recover the needed properties to
construct finite element spaces. First

a function of Q1(K) is uniquely determined by its values on the four vertices
of K

and

the form a function of Q1(K) restricted to an edge is independent of the shape
of K and is uniquely determined by its values on the two vertices of this side.

You might have noticed that the second property looks longer than usual. It has to be
like that. What we assert there is not only that the function on an edge (side) depends
only on the values on the two vertices that lie on that edge, but also that the type of
function itself does not depend on where the other two vertices are. Restricted to one of
the sides we always have a linear function.

1.3 The Q1 finite element method

We are done locally. Now we have to divide the domain into parallelograms and glue the
local spaces together. Note here the fact that not all domains can be decomposed into
parallelograms, but that we are speaking of something else than rectangles and similar
domains.

A partition of a domain in parallelograms (we will call elements to the parallelograms)
has also to respect the rules we gave to partitions with triangles:

56

• two different elements can meet only on a common vertex or a full edge of both,
and

• the partition has to respect the division of the boundary in Dirichlet and Neumann
parts.

Recall that the last property is used only when there is a transition point from ΓD to ΓN
somewhere inside a side of Ω. The properties are exactly the same as those demanded to
triangulations. In fact, there is a tradition to calling simply elements to the constitutive
figures (triangles or parallelograms) and triangulation to the partition, even if it is a
‘parallelogramization’ (that’s an ugly word!), a tradition we are going to honor.

Figure 3.4: A ‘triangulation’ made of parallelograms.

If we now fix values on the nodes (and now nodes are vertices of the elements again),
we can construct a unique function on each K such that it belongs to the local space
Q1(K) and matches the values on the vertices. Because of the second local property, the
functions on the edges do not depend really on the particular space Q1(K) (i.e., on the
shape of the element). They are always linear and fixed by the values on the corresponding
two vertices. Therefore, what we obtain is a globally continuous function, an element of

Vh =
{
uh ∈ C(Ω) : uh|K ∈ Q1(K), ∀K ∈ Th

}
.

We have done this enough times so that you already now what would come here if we just
bothered to rewrite all the details:

• First, we note that the space

V ΓD
h = Vh ∩H1

ΓD
(Ω) = {vh ∈ Vh : vh = 0 on ΓD}

is the same as the space of elements of Vh that are zero on Dirichlet nodes.

• We then number nodes and define the nodal basis functions, to obtain a basis of
Vh with functions that have small support (four elements at most in a triangulation
like the one of Figure 3.4, although there could be more with some special displays
of parallelograms). Ignoring functions related to Dirichlet nodes we obtain a basis
of V ΓD

h .

• We go on and copy the whole of Section 3 in Lesson 1. We have a finite element
method, a linear system, mass and stiffness matrices,...

57

• In the assembly process we notice that, restricted to an element K, a nodal basis
function ϕi is either the zero function or one of the four NK

α . Computing local 4×4
matrices and assembling them in the usual fashion, we can construct effectively the
matrix of the system. The same thing applies to the right-hand side. Whenever we
want to evaluate NK

α or its gradient, we have the usual formulas. Note that in this
case, the gradients are not constant.

Are we there yet? Almost. We were forgetting about the order. The process is the
same one. For the homogeneous Dirichlet problem we obtain

‖u− uh‖1,Ω ≤ Ch|u|2,Ω.

The constant depends on the domain Ω (as well as on the division of Γ into Dirichlet
and Neumann parts) and also on a parameter that measures the maximum flatness of
elements.

Unlike in the case of triangles, flatness of elements is not given by extreme acuteness
of angles, but can happen with elongated rectangles. Now, the measurement of flatness
has to be the ratio between the maximum distance between points of an element and the
radius of the largest circumference we can inscribe in K. This measurement of flatness
(some people call it chunkiness) is also valid for triangles and is the one that is given
usually in textbooks. As a general rule, in this type of error analysis, elements cannot
become too flat.

You will notice that, at least in theory, performance of P1 and Q1 elements seems to be
very similar. Linear elements on triangles can be adapted to more complicated geometries
and make assembly a bit simpler. In some cases (in particular in many important test
cases in mechanics) using rectangles as elements reflects better the inherent geometrical
features of the problem and it is advised to do so. In a forthcoming exercise we will
observe that Q1 elements are just a bit stiffer (more rigid) than P1 elements.

1.4 Combination of P1 and Q1 elements

You might be thinking... if I cannot divide (triangulate) my polygon Ω with parallelo-
grams, am I completely done with the whole Q1 stuff? Is that it? First of all, let me
mention that you will have to wait to the next lesson to see how to construct elements
on general quadrilaterals, elements that are, by the way, much more complicated to use.
Anyhow, there’s another possibility, which I personally find one of the simplest proofs
of the great versatility of finite element methods and of the great idea that assembly is.
Wait for it.

Let me recall something we just saw. In the global finite element space for the Q1

method
Vh =

{
uh ∈ C(Ω) : uh|K ∈ Q1(K), ∀K ∈ Th

}
,

the local space depends on the particular element. You could think that this makes
the method complicated. What is complicated is the explanation of the method. The
assembly process does not see this difference of local space since it sends evaluations of
the local basis functions to the reference domain.

58

Figure 3.5: A triangulation made of triangles and rectangles.

We can think of domains that admit a triangulation made of triangles and rectangles,
such as the one of Figure 3.5. The rectangular pieces of the domain are perfect for a
division in rectangles, but the connecting piece seems to demand the use of triangles, so
we decide to use both.

An element of this new type of triangulation can be either a triangle or a parallelogram.
The triangulation has to fulfill the usual requirements: intersections can only happen in
common vertices or common edges and Dirichlet-Neumann partition of the boundary has
to be respected. The local space will depend on the type of element:

P(K) =

[
P1, if K is a triangle,

Q1(K), if K is a parallelogram.

Nodes are vertices, as usual, and the global space

Vh =
{
uh ∈ C(Ω) : uh|K ∈ P(K), ∀K ∈ Th

}
is easily defined by gluing elements because of the following facts:

a function of P(K) is uniquely determined by its values on the nodes (three or
four) of K

and

the form a function of P(K) restricted to an edge is independent of the type
of K and is uniquely determined by its values on the two vertices of this side.

Seen on edges, all these discrete functions are linear, so we can glue triangles with paral-
lelograms of any shape, as we were able to glue different parallelograms together.

Other than this, life goes on as usual. In the process of assembly is where we use
whether an element is a parallelogram or a rectangle: the reference domain is different
depending on which and local matrices have different sizes (3× 3 for triangles, 4× 4 for
parallelograms). This looks more complicated but you have to think in terms of the grid
generator. If it gives you triangles and rectangles, either they are given in a different list

59

K

K’
L

x
2

x
1

Figure 3.6: A triangle and a parallelogram sharing an edge.

(and you assemble first ones and then the other) or it gives you information about the
type of geometry of each element, which you obviously learn by only looking at the list
of vertices of the element.

What about error? Let’s stick again to the case of homogeneous Dirichlet condition.
Céa’s lemma still applies

‖u− uh‖ ≤
M

α
inf
{
‖u− vh‖ : vh ∈ V 0

h

}
and the right-hand side is an approximation error which can be bounded locally, element
by element. Hence, the error of the method can be bounded by the error of approximating
with linear functions on triangles and with Q1(K) functions on parallelograms. In both
cases, we have an h-type error. Order one.

2 Higher order methods on parallelograms

Once here, we should make a fast review of the novelties of introducing the Q1 method.
Note that it took its time, compared to how simple it was to introduce the P2 elements
once we had done everything on the P1 very clear. The novelties were: (a) there is a new
reference element and therefore a new concept of triangulation, plus (b) the local space
depends on the particular element, but (c) restricted to edges the local spaces do not
depend on the element. That was basically all of it. Let us go for higher order.

2.1 The Q2 elements

The space Q2 uses all linear combinations of these monomials

1, ξ, η, ξ2, ξη, η2, ξ2η, ξη2, ξ2η2.

There is nine of them. (We will need nine nodes in the reference domain.) Looking
carefully you’ll see that Q2 is the space of polynomials in the variables ξ and η that have
degree at most two in each variable separately. It includes therefore all polynomials of
degree two but goes up to polynomials of degree four.

60

There’s a nice table that will simplify your life in remembering these spaces. It serves
to compare P2 (the order two space for triangles) with Q2 (the order two space for squares)

η2

η ξη

1 ξ ξ2

η2 ξη2 ξ2η2

η ξη ξ2η

1 ξ ξ2

(You will have to recognize that that’s clever.) We now consider nine points (nodes) on
the reference square:

• the four vertices,

• the midpoints of the four sides,

• the center (the origin).

The two relevant properties here are the usual ones: (a) a function of Q2 is uniquely

determined by its values on the nine nodes; (b) restricted to one of the sides of K̂, a
function of Q2 is a polynomial of degree two in one variable and is therefore determined
by its values on the three nodes that lie on the edge.

Note that if you use a linear map FK to transform K̂ into the parallelogram K,
midpoints of edges are mapped onto midpoints of edges and the center is mapped onto
the ‘center’ of the parallelogram (the point where both diagonals meet, or where the lines
joining midpoints of opposite sides meet). See Figure 3.7 for a sketch of this.

η

ξ

Figure 3.7: The Q2 reference element on the left. A parallelogram with the Q2(K) nodes
marked on the right.

We then create the local space

Q2(K) = {q : K → R : q ◦ FK ∈ Q2} = {q̂ ◦ F−1
K : q̂ ∈ Q2},

and observe again that:

• this 9-dimensional space depends on K but not on the particular transformation,

61

• Q2(K) = Q2 when K is a rectangle in the horizontal-vertical direction, but in
general

P2 ⊂ Q2(K) ⊂ P4,

• we can construct nine nodal basis functions on K̂, {N̂α : α = 1, . . . , 9} and trans-
form them to

NK
α = N̂α ◦ F−1

K

to obtain a nodal basis of Q1(K),

• the two nodal properties that hold on the reference square still hold on K; in
particular, restriction of an element of Q1(K) to one of the four sides is a polynomial
of degree at most two, and is independent of the shape of K.

From here on, everything is just a copy of the Q1 case: global spaces, global nodal
basis functions, restriction of those to elements giving the local nodal functions, Dirichlet
nodes, etc. Note that the interior node is just that: interior. Therefore you can apply
static condensation to this node. In Pk we had to wait to k = 3 to obtain an interior
node.

The fact that the polynomial degree increases is something you cannot take too lightly.
For instance, when computing the local mass matrices∫

K

NK
β NK

α ,

you have to compute an integral of a polynomial of degree eight.
Order of the method (in the best possible conditions) is two in the H1(Ω) Sobolev

norm. The method can be simultaneously used with P2 elements over triangles for tri-
angulations that combine parallelograms and triangles. Can you see? That was really
fast.

3 Three dimensional domains

3.1 Elements on tetrahedra

What we did at the beginning of Lesson 1 about formulating a boundary value problem
in a weak form can be easily done for three dimensional domains Ω. Integrals over Ω
become volume integrals. Integrals over Γ are now surface integrals. If Ω is a polyhedral
domain, it is possible (although not easy) to divide it into tetrahedra. Triangulations with
tetrahedra2 have to follow the usual rules: (a) two different elements can intersect only on
a common vertex, a common edge or a common face; (b) the Dirichlet/Neumann division
of the boundary has to be respected by the discretized geometry. This last point is much
trickier than before. If each face of the boundary of Ω is entirely included either on the
Dirichlet boundary or on the Neumann boundary, everything is simple and condition (b)

2We are in three dimensions, but we keep on calling these things triangulations. For these ones some
people prefer the very specific neololgism tetrahedrizations.

62

reduces to nothing. When there are transitions inside a face, these transitions have to be
along straight lines or polygonal lines. Otherwise, the method introduces another kind of
error, as the discrete geometry is not able to describe precisely the exact geometry. This
is similar to what happens in curved boundaries, a problem that we will explore briefly
in the following lesson.

An element of

P1 =
{
a0 + a1 x+ a2 y + a3 z : a0, a1, a2, a3 ∈ R

}
is uniquely determined by its values on the four vertices of a general non-degenerate
tetrahedron. See Figure 3.8 for a sketch of the tetrahedral finite element. More over, seen
on each of the faces of the tetrahedron such a function is a linear function of two variables
and seen on each of the six edges it is a linear function of a single variable. Therefore: the
value of the function on each face is determined by the three degrees of freedom (nodal
values) that lie on that face and the value on each edge is determined by its values on the
two associated nodes.

Figure 3.8: A tetrahedron and its four P1 degrees of freedom

With this in hand we can do our business as usual. Nothing is really changed by going
to the three dimensional case. The reference element is usually taken as the tetrahedron
with vertices on (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). Fortunately, the order of the local
numbering of vertices is irrelevant, since all permutations give valid numberings.

The price to pay for this simplicity is the fact that tetrahedra are much more strange
animals than they look at first sight. In particular it is not that simple to fathom how to
divide a given tetrahedron into pieces that are not too deformed. Look at what happens
(Figure 3.10) when you cut out the four corners of a regular tetrahedron. Inside you
obtain a regular octahedron that can be easily divided into two pyramids with square
basis, each of which can be divided into two similar tetrahedra. The resulting interior
four tetrahedra are not regular anymore. There are more ways of doing this kind of things.
My point here is that tetrahedra are easy but not so easy.

Local dimension of the space is four. When you glue the corresponding P1 elements to
create a finite element space the full dimension is the number of vertices. Dirichlet nodes
are defined as usual (nodes on the Dirichlet boundary, or vertices of faces that are on the
Dirichlet boundary). Order is one.

63

η

ξ

ζ

Figure 3.9: The reference tetrahedron, as seen from behind (sort of). The reference
variables are ξ, η and ζ (some authors prefer z for the third one)

Figure 3.10: When you cut the four corners of a regular tetrahedron you end up with a
regular octahedron

It is not difficult to define Pk elements on the tetrahedron for any k. Note that the
local dimensions of the Pk spaces (as well as the number of necessary nodes) increase
now much faster than in the two dimensional cases, because there are many more new
monomials. The space Pk uses all monomials of the form

xi1yi2zi3 , i1, i2, i3 ≥ 0, i1 + i2 + i3 ≤ k.

For instance
dimP2 = 9, dimP3 = 19.

There’s a formula for this but we will not give it here.
It is simple to give the nodes in the reference domain. For the Pk element, they are

just the points with coordinates(
i1
k
, i2
k
, i3
k

)
, i1, i2, i3 ≥ 0, i1 + i2 + i3 ≤ k.

We have to wait to k = 4 to obtain an interior node that we can condense statically.

64

3.2 Elements on parallelepipeds

The Qk(K) elements are very naturally defined on parallelepipeds. The reference element
is the cube [−1, 1] × [−1, 1] × [−1, 1] or also [0, 1] × [0, 1] × [0, 1], depending on personal
preferences. The reference space Qk is the one of all linear combinations of monomials

ξi1ηi2ζ i3 , 0 ≤ i1, i2, i3 ≤ k

and has therefore dimension (k + 1)3. Nodes are easily found by subdividing uniformly
the cube into equally sized smaller cubes. Interior nodes appear already with k = 2. The
local spaces on parallelepipeds (the image of a cube under a linear transformation) are
the new spaces Qk(K) defined as usual.

One has to be extra careful here in giving always vertices in a coherent order, so that
we don’t try to map the figure incorrectly from the reference element. That is the price
to pay for the geometrical simplicity. The increase of the polynomial degree is also a
non-minor issue: for Q1(K) elements we have polynomials of degree three!

4 Exercises

1. Comparison of P1 and Q1. Consider a square domain Ω and two triangulations of
it as the ones given in Figure 3.11. In the first triangulation we consider a P1 method
for the usual equation, only with Neumann conditions. In the second partition we
consider a Q1 method.

Check that we have the same number of unknowns in both cases. Draw the form of
the mass-plus-stiffness matrices in both cases. Check that the Q1 has in principle
more non-zero elements, since there are pairs of adjacent nodes that are not so in
the triangular mesh.

Figure 3.11: A triangle mesh and a parallelogram mesh of a square.

2. The Q3 element in the plane. What would be the nodes and the polynomial
space for a generalization of the Qk type elements to k = 3? How many interior
nodes do you obtain?

3. Elements on prisms. The reference prism with triangular basis can be taken for
instance as the set of points (ξ, η, ζ) with

0 ≤ ξ, η, ξ + η ≤ 1, 0 ≤ ζ ≤ 1.

65

In the two plane variables it works like a triangle. In the vertical variables it
works like a parallelogram. Propose a correct polynomial space in this reference
configuration so that the six vertices are valid nodes for a finite element using
prisms.

Figure 3.12: The reference prism.

66

Lesson 4

More advanced questions

In this lesson we are going to have a fast look at several different questions related to how
the Finite Element Method is used (or adapted) in different situations. The section on
eigenvalues is of particular importance, since we will be using it for the stability analysis
of evolution problems.

1 Isoparametric elements

So far we have only dealt with polygonal domains. You will agree that in many instances
boundaries are due to be curved, so we will have to take into account that fact.

First of all when creating a triangulation, you are substituting your real curved domain
by a polygonal approximation. Your grid generator is going to take care of the following
detail: all boundary nodes of the triangulation have to be placed on the real boundary. This
means in particular that if you need smaller triangles, you cannot obtain them by simply
subdividing your existing grid and you definitely have to call back your grid generator to
give you new vertices that are on the boundary.

Figure 4.1: A correct and an incorrect triangulation of a curved domain.

You might think, well that’s it then, isn’t it? You have your triangles and you apply
your triangular finite element scheme. The answer is yes if you are going to apply the P1

method.
Note for a moment that functions on H1(Ω) are defined on Ω and functions of Vh on

the approximated polygon. Therefore the discrete space Vh is not a subspace of H1(Ω).
However, an error analysis is still possible. What this error shows is that the error
produced by the geometry approximation beats the error of the method if we try to do P2

elements or higher, so it doesn’t pay off to use high order elements if the approximation
to the boundary is so rough.

67

Let us see how to mend this for the P2 approximation. Note that this is not a purely
theoretical question and that part of what we are going to learn here will be used to define
finite elements on general quadrilaterals.

1.1 Deformed triangles

As usual, take K̂ to be the reference triangle and K0 a triangle with vertices

pKα = (xα, yα), α = 1, 2, 3.

With these points we construct the linear map F 0
K : K̂ → K0[

x

y

]
=

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

][
ξ

η

]
+

[
x1

y1

]

= (1− ξ − η)

[
x1

y1

]
+ ξ

[
x2

y2

]
+ η

[
x3

y3

]
.

P
1

P
2

P
4

P
3

K

P
2

^

P
3

^

P
1

^

P
4

^

K
^

Figure 4.2: The reference triangle and a deformation of the image triangle.

Let us now call pK4 to the midpoint of the segment that joins p̂2 and p̂3, that is,

p̂4 = (1
2
, 1

2
).

Take a fourth point in the physical space, pK4 = (x4, y4), and compute its deviation from
the midpoint of pK2 and pK3 [

δx

δy

]
=

[
x4

y4

]
−

 x2 + x3

2
y2 + y3

2

 .
Finally take the transformation FK : K̂ → R2 given by

FK(ξ, η) = F 0
K(ξ, η) + 4 ξ η

[
δx
δy

]
.

Note that this is a linear transformation plus a correction term. The transformation FK
satisfies the following properties, all of them of easy verification:

68

• It sends the chosen points in the reference domain to the ones in the physical space

FK(p̂α) = pKα , α = 1, . . . , 4.

• If ξ = 0, then
FK(0, t) = F 0

K(0, t).

This means that the image of the vertical edge in reference coordinates is the segment
joining pK1 and pK3 , covered at constant velocity, as if we were using the linear

transformation. The same thing happens to the horizontal side of K̂.

• If pK4 is aligned with pK2 and pK3 , then the image of the edge that joins p̂2 and
p̂3 is the segment that joins pK2 and pK3 . However, this segment is parameterized
at constant velocity only when pK4 is the midpoint of pK2 and pK3 (in that case
δx = δy = 0 and we have only the linear term in the transformation FK).

• The Jacobian matrix of FK is not constant:

BK = DF (ξ, η) = B0
K + 4

[
η

ξ

] [
δx δy

]
=

[
x2 − x1 + 4ηδx x3 − x1 + 4ηδy

y2 − y1 + 4ξδx y3 − y1 + 4ξδy

]

When pK4 is not too far from the midpoint of pK2 and pK3 , that is, when the deviation

(δx, δy) is not too large, it is possible to prove that the image of K̂ under this transforma-

tion K = FK(K̂) is mapped bijectively from the reference element and therefore we can
construct an inverse to

FK : K̂ → K.

1.2 Local spaces

Now we have the physical element, K, which is defined as the image of K̂ by the trans-
formation FK , so we have gone one step further from the beginning, as now the physical
element is only defined from the reference element. With this element in hand we de-
fine the local space by transforming P2 on reference variables (as we did with all Qk(K)
spaces):

P2(K) = {p : K → R : p ◦ FK ∈ P2} = {p̂ ◦ F−1
K : p̂ ∈ P2}.

The degrees of freedom are placed in the following six nodes:

• the three vertices,

• the midpoints of the two straight sides,

• the point pK4 .

We do not have an explicit expression of how elements of P2(K) are, but we know that

if N̂α are the six nodal basis functions of the P2 reference element, then the functions

NK
α = N̂α ◦ F−1

K

form a basis of P2(K). The following properties are simple to prove:

69

P
1

P
2

P
4

P
3

P
6

P
5

Figure 4.3: The local nodes in an isoparametric P2 triangle

• A function in P2(K) is uniquely determined by the values on the six nodes on K.

• Restricted to any of the two straight sides of K, a function in P2(K) is a polynomial
of degree two in one variable (that is, the form of the function does not depend on
the geometry of the element) and is therefore uniquely determined by its values on
the three nodes that lie on that side.

• The value of a function in P2(K) on the curved edge of K is uniquely determined
by its value on the three nodes that lie on that edge.

The first property allows us to use the six nodes as local degrees of freedom. The second
one allows as to glue P2(K) on curved triangles with P2 elements on straight triangles,
since the values on the straight sides are just polynomials.

If K is a usual straight triangle and we take pK4 to be the midpoint of the corresponding
edge, then FK is a linear map and P2(K) = P2.

1.3 Finite element spaces with isoparametric triangles

Figure 4.4: A triangulation using isoparametric elements

Let us then begin with an approximate triangulation of a curved domain following the
rules:

• Intersection of two different triangles can only happen in a common vertex or edge.

• There must be a vertex placed on each transition point from Dirichlet to Neumann
boundaries.

70

• Triangles with an edge on the of the approximating polygon can have only one edge
on this boundary and both vertices have to be on the exact boundary Γ.

Look again at Figure 4.1 to see what we mean. We not only want boundary triangles to
hang from the real boundary, but we want to avoid a triangle to have two edges on the
boundary1.

The second part of the triangulation process consists of choosing a point on the exact
boundary for each boundary edge. This point should be close to the midpoint of the
straight edge that approximates the real curved boundary. We use this new point to
construct an isoparametric triangle with the same vertices for each boundary triangle.

Figure 4.5: Substituting a straight triangle on the boundary by a isoparametric triangle.

When we write the equations of the finite element method using these local spaces,
we must have in mind that the union of all triangles (curved on the boundary, straight
otherwise) is not the original domain Ω, but an approximation of it, which we will call
Ωh. We will still call Dirichlet nodes to nodes on the Dirichlet boundary, remarking
that these nodes are in the correct boundary Γ, so we will be able to read data on them
when needed. The full finite element space is

Vh = {uh ∈ C(Ω) : uh|K ∈ P2(K), ∀K ∈ Th},

and the subspace with homogeneous Dirichlet boundary conditions is

V ΓD
h = {vh ∈ Vh : vh(p) = 0, ∀p Dirichlet node}.

Note that functions of V ΓD
h are not really zero on the Dirichlet boundary ΓD but on the

curved approximation of that boundary, an approximation hanging from the vertices of
the initial triangulation and from the additional point per edge that was used to create
the isoparametric elements. It will not come out as a surprise, since the process of gluing
spaces is the same as what we did with P2 elements, that the dimension of Vh is the number
of nodes (that is the number of vertices plus the number of edges) and the dimension of
V ΓD
h is the number of non-Dirichlet edges. A nodal basis can be constructed as usual.

The restriction to elements of nodal basis functions will be again the local basis functions,
themselves defined as the transformed local nodal functions on the reference element.

1Many grid generators, even for polygonal domains, avoid putting two edges of the same triangle on
the boundary. There is a simple reason for that: if two edges of a triangle are in a homogeneous Dirichlet
boundary and we are using P1 elements, the function vanishes in the whole triangle, which is a poor
result.

71

The discrete bilinear form is ah : Vh × Vh → R

ah(uh, vh) =

∫
Ωh

∇uh · ∇vh +

∫
Ωh

uh vh,

and the linear form is `h : Vh → R

`h(vh) =

∫
Ωh

f vh +

∫
ΓhN

g vh.

With them we obtain the numerical method
find uh ∈ Vh such that

uh(pi) = g0(pi), ∀i ∈ Dir,

ah(uh, ϕi) = `h(ϕi), ∀i ∈ Ind .

Note that the bilinear form poses no problem whatsoever. The fact that we are working
on the approximate domain is sort of invisible to the assembly process: we will go element
by element transforming from the reference configuration and after having added all terms
we will have computed an integral over Ωh instead of Ω. More on this at the end of this
section.

The issue of the data functions is a little more delicate. When we want to compute∫
K

f ϕi or, in fact,

∫
K

f NK
α

for one of the curved domains K, it is perfectly possible that the source function is not
defined in parts of K. Look at Figure 4.5 and see how there is a small piece of the discrete
geometry that lies outside the domain. Several theoretically sound possibilities can be
proposed to mend this. In practice, and since you are due to use quadrature formulas for
this integrals, just avoid using quadrature points in those areas.

The situation for the Neumann conditions (given normal derivative) is even more
complicated and I have been deliberately vague in writing∫

ΓhN

g ϕi

without specifying what I mean by ΓhN . The fact is g1 is defined in the exact Neumann
boundary and ϕi in its approximation, so the integral is just a way of speaking. Assembly
of this term will be done edge-by-edge. For each edge integral we could just try to use
a quadrature formula that evaluates only on the three common points between the exact
and the discrete geometry or think of something more clever. Let’s not do this right now.
I just wanted you to see that complications arise very easily.

Even when computing the local integrals∫
K

∇NK
β · ∇NK

α

∫
K

NK
β N

K
α

72

for curved K, we still have to be careful. Let us begin with the easy one, the mass matrix.
We have a formula for the local basis functions

NK
α = N̂α ◦ F−1

K .

If we want to evaluate NK
α in a point of K, say (x, y), we need to compute F−1

K (x, y).
This is the same as solving the non-linear system

x = (x2 − x1) ξ + (x3 − x1) η + x1 + 4ξηδx

y = (y2 − y1) ξ + (y3 − y1) η + y1 + 4ξηδy.

It is only a 2 × 2 system and equations are quadratic, but it is still a non-linear system
and you will need Newton’s method or something similar to get an approximate solution.
Of course we know the exact solution for six points (the six nodes), since they are mapped
back to the six nodes of the reference domain, so using these points is for free. It looks
like we are done, but you have still to notice that the integral is happening over a very
strange domain for which we don’t have quadrature formulas. What is the wise thing to
do? Move everything back to the reference domain:∫

K

NK
β N

K
α =

∫
K̂

| det BK |N̂β N̂
K
α .

With this strategy, the integral is defined on a plain triangle and we just need to compute
the non-constant determinant of

BK =

[
x2 − x1 + 4ηδx x3 − x1 + 4ηδy

y2 − y1 + 4ξδx y3 − y1 + 4ξδy

]

on the chosen quadrature points. The stiffness matrix is more challenging. Instead of
trying to work the integral on the curved domains (with the complication of having to
invert FK every time we need an evaluation), what we do is go backwards to the reference
domain and write ∫

K̂

| det BK | (CK∇N̂α · ∇N̂β),

where
CK = B−1

K B−>K

(we did this in Lesson 2) is a non-constant matrix that requires inversion of BK every
time an evaluation is needed.

The whole thing looks more complicated than it is, because there are many aspects
to take care of at the same time. The lesson you have to learn here is that evaluating
anything (a basis function, its gradient, etc) has a price so you should try to balance a
sufficiently precise approximation (exact computation is not possible any longer) of the
integrals with taking as few quadrature points as possible.

73

2 Elements on quadrilaterals

Going back to the case of polygonal domains, we might be still more interested in using
grids of quadrilaterals type than triangular grids. It can be a question of your geometry
being described in a simpler form by using quadrilaterals, a preference for Qk elements or
a physical motivation to prioritize directions in the discrete level2. Whatever your reasons
are, here is a way of defining finite elements of quadrilaterals that are not parallelograms.
By the way, many people say quads, which is a nice shortening. I’m not going to write
it again.

The construction is reminiscent of that of isoparametric elements. We begin with the
reference square [−1, 1]× [−1, 1] and recall the four Q1 basis functions

1

4
(1± ξ)(1± η)

(it is easy to check which one corresponds to each vertex). Now we take a general convex
quadrilateral3 and take its four vertices in rotating order: pK1 , . . . ,p

K
4 .

η

ξ

 p
1 p

2

 p
3

 p
4

^

^^

^

Figure 4.6: The reference square again.

Since the functions N̂α satisfy

N̂α(p̂β) = δαβ, α, β = 1, . . . , 4,

it is clear that the map FK : K̂ → R2[
x

y

]
= N̂1(ξ, η)

[
x1

y1

]
+ N̂2(ξ, η)

[
x2

y2

]
+ N̂3(ξ, η)

[
x3

y3

]
+ N̂4(ξ, η)

[
x4

y4

]
,

sends vertices to vertices, that is

FK(p̂α) = pKα , α = 1, . . . , 4.

2In any case, remember that from a quadrilateral grid you can always obtain a triangular one doubling
the number of elements and with a little less stiffness (remember the exercise in Lesson 2).

3Do not waste your time with non-convex quadrilaterals. For that it’s better to use pairs of triangles

74

Moreover, the restriction of FK to one of the four sides of K̂ is mapped at constant velocity
to the corresponding edge of K. Obviously, by continuity, the interior of K̂ is mapped to
the interior of K.

The map FK in fact transforms a uniform Cartesian into something very similar in
K, as shown in Figure 4.7. Computation of F−1

K is therefore very simple on points of this
special grid in the quadrilateral.

Figure 4.7: The image by the bilinear map of a Cartesian grid in the reference square.

With this transformation in hand we can define the local spaces

Qk(K) = {q : K → R : q ◦ FK ∈ Qk}.

I think you can already imagine what the local nodes are, how we can glue elements on
different quadrilaterals and so on. If K is a parallelogram, FK is a linear map and we
obtain the usual Qk spaces, which are composed of polynomial functions. In other cases,
elements of the space are functions of the form q̂ ◦ F−1

K with q̂ a polynomial. The inverse
map F−1

K is not linear anymore. Now it is rational function. Therefore, elements of Qk(K)
are not polynomials any longer, which is not really relevant, since we are only going to
use the basis functions, which we obtain by transforming from the reference element.

Just a fast list of facts:

• The spaces Qk(K) depend on the quadrilateral and not on the order we have given
the vertices to construct the transformation.

• The image of the Qk nodes by FK are valid degrees of freedom in Qk(K).

• Restricted to the four sides, functions of Qk(K) are just polynomials of degree up
to k in one variable. Therefore, the type of functions is independent of the shape of
the quadrilateral and the values on sides is determined by the values on nodes that
are on the side.

75

Thanks to these properties we can easily construct finite element spaces on quadrilateral
grids (composed of convex quadrilaterals). Parallelograms are a particular case of these
elements, so we can use all types of quadrilaterals together . Therefore, we can combine
these elements with triangular elements of the same degree: for instance Q1(K) elements
on quadrilaterals with P1 elements on triangles.

3 Mass lumping

Let us just here add some comment about the mass matrix in the finite element method.
For the usual Pk and Qk, we should expect the mass matrix∫

Ω

ϕj ϕi

to be well-conditioned. Recall that the mass matrix is symmetric and positive definite.
The spectral condition number of this type of matrices is the ratio between its largest and
its smallest eigenvalue (all of them are real and positive), and good conditioning means
that this ratio is not large. In particular it means that if

uh =
∑
j

ujϕj

then the constants in the inequality

C1

∑
j

|uj|2 ≤
∫

Ω

|uh|2 ≤ C2

∑
j

|uj|2

are of the same size and thus and the Euclidean norm of the vector of coefficients repre-
sents faithfully the L2(Ω)-norm of the function up to a scaling factor. In its turn, good
conditioning means that the use of the most common iterative methods for systems with
symmetric positive definite matrices (such as Conjugate Gradient) is going to converge
quickly.

However, sometimes it seems convenient to substitute the mass matrix by an even
simpler matrix. In the next lesson we will see a situation where this seems justified.
Substitution of the mass matrix by a diagonal matrix is called mass lumping, since it
lumps mass on the nodes instead of distributing it along pairs of nodes. We are going to
explain this process for the P1 case.

Recall briefly the three-vertex quadrature rule on triangles (we mentioned it in the
lesson on assembly) ∫

K

φ ≈ areaK

3

3∑
α=1

φ(pKα),

where pKα are the three vertices of K. This formula integrates exactly all polynomials of
degree one. However, it introduces error when applied to a polynomial of degree two. In
particular, the approximation∫

K

NK
β N

K
α ≈

area

K

3∑
γ=1

NK
α (pKγ)NK

β (pKγ) =
areaK

3
δαβ

76

is not exact. (We have accumulated as many as three indices in the last expression. Do
you see why the result holds? Note that local basis functions are one on a single vertex
and zero on the other two.) If we apply this approximation at the assembly process for
the mass matrix, we are substituting the 3 × 3 local mass matrices by a 3 × 3 diagonal
matrix. Adding up all contributions we are approximating∫

Ω

ϕjϕi ≈ 0, i 6= j

and ∫
Ω

|ϕi|2 =
∑
K

∫
K

|ϕi|2 ≈
∑{areaK

3
: K such that pi ∈ K

}
= 1

3
area

(
suppϕi

)
.

Once again, the support of ϕi is the set of triangles that surround the node pi.
In an exercise at the end of this lesson we will see a very, very simple way of computing

the lumped mass matrix once the exact mass matrix has been computed.

4 The discrete eigenvalues

While the mass matrix is well conditioned, the stiffness matrix is not. And it has to be
so, because it is trying to approximate an intrisically ill-conditioned problem. We are
going to have a look at this. Note that this section is really important to understand the
stability analysis of the application of FEM methods for evolution problems, so take your
time to understand what’s being told here. Note that the results here are considerably
deeper than what we have been using so far.

4.1 The Dirichlet eigenvalues of the Laplace operator

For simplicity, let us concentrate our efforts in problems only with Dirichlet conditions.
In fact, with homogeneous Dirichlet conditions. Instead of trying to solve a boundary
value problem, we are going to study an eigenvalue problem: find numbers λ such that
there exists non-zero u satisfying[

−∆u = λu, in Ω,

u = 0, on Γ.

Note two things. First of all, u = 0 is not an interesting solution since it always satisfies
the conditions, no matter what λ is. Second, boundary conditions in eigenvalue problems
have to be zero. If you have two different solutions u for the same λ, any linear combination
of them is another solution. The set of eigenfunctions (that’s u) for a given eigenvalue
(that’s λ) is a subspace of ... (wait for it).

In this problem ΓD = Γ. The space H1
Γ(Ω) is given a different name. This one

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0, on Γ}.

77

The set of eigenfunctions for a given eigenvalue is a subspace of H1
0 (Ω). Therefore, also

of H1(Ω) and of L2(Ω), which are bigger and bigger spaces. Substituting the definition
of eigenfunction inside Green’s formula∫

Ω

∆u v +

∫
Ω

∇u · ∇v =

∫
Γ

(∂nu) v

and proceeding as usual, we obtain

−λ
∫

Ω

u v +

∫
Ω

∇u · ∇v =

∫
Γ

(∂nu) v = 0, if v = 0 on Γ.

So we arrived easily to the weak formulation of the eigenvalue problem: find λ such that there exists 0 6= u ∈ H1
0 (Ω) satisfying∫

Ω

∇u · ∇v = λ

∫
Ω

u v, ∀v ∈ H1
0 (Ω).

Do we know how many eigenvalues are going to appear? Yes, we do. Infinitely many.
But among those infinitely many, not so many, since we will be able to count them. I am
going to try and break up the theoretical result in many pieces so that you really grasp
what’s in here:

• All eigenvalues are real and positive.

• They can be numbered and they diverge to infinity. There is therefore no accumu-
lation point of eigenvalues. In other words, if you choose a finite interval, there is
only a finite number of eigenvalues in it.

• Two eigenfunctions corresponding to two different eigenvalues are L2(Ω)-orthogonal.
In more detail, assume that[

−∆u = λu, in Ω,

u = 0, on Γ,
and

[
−∆v = µv, in Ω,

v = 0, on Γ,

with λ 6= µ. Then ∫
Ω

u v = 0.

• The multiplicity of each eigenvalue is finite, that is, if λ is an eigenvalue, there is
only a finite number of linearly independent eigenfunctions associated to it.

Let’s try to put all these properties together. For each eigenvalue we take a set of linearly
independent eigenfunctions. Using the Gram-Schmidt orthogonalization method, we can
make them mutually L2(Ω)-orthogonal and with unit square integral. Instead of num-
bering the different eigenvalues, we take k copies of each eigenvalue with multiplicity k.
Then we can order all the eigenvalues in increasing order and we obtain a list

0 < λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . , λn →∞

78

and associate to each eigenvalue an eigenfunction[
−∆φn = λnφn, in Ω,

φn = 0, on Γ,

so that ∫
Ω

φn φm = δnm

and we have taken all possible eigenvalues and (linearly independent) eigenfunctions.
Note again that eigenfunctions for different eigenvalues are per se orthogonal and that
we enforce orthogonality of eigenfunctions of the same eigenvalue by an orthogonalization
process.

There is an additional property that needed this kind of numbering of eigenvalues and
eigenfunctions to be properly introduced:

• The sequence of eigenfunctions we have just obtained is a complete orthogonal set
in L2(Ω), which means that if u ∈ L2(Ω), then

u =
∞∑
j=1

uj φj, uj =

∫
Ω

uφj,

with convergence of the series in the norm of L2(Ω), i.e.,∫
Ω

∣∣∣u− n∑
j=1

ujφj

∣∣∣2 n→∞7−→ 0.

4.2 The discrete Dirichlet eigenvalues

Assume now that Ω is a polygon and take Vh ⊂ H1(Ω), any of our choices of finite element
spaces. By eliminating the Dirichlet nodes we obtain a basis of the space

V 0
h = Vh ∩H1

0 (Ω) = {uh ∈ Vh : uh = 0, on Γ}.

We now substitute the problem find λ such that there exists 0 6= u ∈ H1
0 (Ω) satisfying∫

Ω

∇u · ∇v = λ

∫
Ω

u v, ∀v ∈ H1
0 (Ω),

by its finite element approximation find λh such that there exists 0 6= uh ∈ V 0
h satisfying∫

Ω

∇uh · ∇vh = λh

∫
Ω

uh vh ∀vh ∈ V 0
h .

Consider the matrices W and M

wij =

∫
Ω

∇ϕj · ∇ϕi, mij =

∫
Ω

ϕjϕi, i, j ∈ Ind.

79

Note that these are just the parts of the stiffness and mass matrices related to non-
Dirichlet nodes. Let N = #Ind be the number of non-Dirichlet nodes. The discrete
eigenvalue problem is equivalent to this other problem[

find λh such that there exists 0 6= u ∈ RN satisfying

Wu = λhMu.

This last problem is a generalized eigenvalue problem for matrices. Let me condense the
main properties of this problem for you. Recall that N = N(h) is the dimension of the
problem.

• (Generalized) eigenvalues are real and positive.

• Eigenvectors corresponding to different eigenvalues are orthogonal with respect to
M: if

Wu = λhMu, Wv = µhMv

with λh 6= µh, then
u · (Mv) = 0

• There are N linearly independent eigenvectors.

Note that unlike in the original problems, there is no question about having more than N
eigenvalues, since we are dealing with an N × N matrix. Counting eigenvalues as many
times as their multiplicity we have N of them that we can arrange in increasing order

0 < λh,1 ≤ λh,2 ≤ . . . ≤ λh,N .

Choosing linearly independent eigenvectors in case we have multiplicity higher than one,
we can choose vectors φn such that

Wφn = λh,nMφn

and
φn · (Mφm) = δnm.

The vectors φn give a basis of RN . The corresponding finite element functions

φh,n =
N∑
j=1

φn,jϕj, φn = (φn1, . . . , φnN)>

form a basis for V 0
h . Note that the M-orthogonality of the eigenvectors is just the matrix

form of the orthogonality condition∫
Ω

uh,n uh,m = δnm.

80

4.3 Convergence

So far we have two different problems. The continuous problem (the Dirichlet eigenvalues
of the Laplace operator) has infinitely many solutions. The discrete problem (approxi-
mation by finite elements of the weak formulation of the eigenvalue problem) has a finite
number of solutions. We will not deal in full detail with convergence of the discrete so-
lutions to the exact solutions. We will however mention here two important properties.
The first one is, let’s say so, peculiar:

with the increasing order of continuous and discrete eigenvalues that takes into
account their multiplicity, discrete eigenvalues always overestimate continuous
eigenvalues

λn ≤ λh,n, n = 1, . . . , N.

The second one is what we would expect from a discretization method:

discrete eigenvalues converge to continuous eigenvalues; for fixed (but arbitrary
n)

λh,n
h→07−→ λn,

if the triangulations become finer.

You can think of you matrix eigenvalue problem as having infinetily many solutions: the N
eigenvalues and then λh,N+1 = λh,N+2 = . . . = +∞. These non-finite eigenvalues obviously
overestimate the corresponding continuous ones. When you increase the dimension of the
space (you refine the mesh) you bring some newer eigenvalues from infinity. They begin
to approximate the corresponding higher eigenvalues of the exact problems, which are
larger as the dimension of the discrete space increases. Note that

λN
λ1

≈ λN
λh,1
≤ λh,N

λh,1
.

This means that the ratio between the largest and smallest generalized eigenvalue of W
diverges. Because the mass matrix is in principle well-conditioned, we can prove with this
that the stiffness matrix is ill-conditioned. How bad the conditioning is depends on how
fast the Dirichlet eigenvalues diverge. Anyway, you have to expect bad behavior of the
stiffness matrix in anything that depends on conditioning.

5 Exercises

1. Bad quadrilaterals. Figure 4.7 will help you to solve both questions in this
exercise.

(a) Take four points that define a convex quadrilateral, given in rotating order:
pK1 , pK2 , pK3 and pK4 . (They could be, for instance, the vertices of the reference
square). If we give the third and the fourth vertices in the wrong order to the
transformation, what is the transformed figure we obtain?

81

(b) Take now the four vertices of a non-convex quadrilateral given in rotating order
and consider the usual bilinear transformation from the reference square. Using
the fact that vertical and horizontal lines in the reference square are mapped
to straight lines in the physical element, what kind of figure are we mapping?

2. Computation of the P1 lumped mass matrix. We will go step by step. Using
the three vertex formula compute exactly the following integral∫

K

NK
α .

Adding the previous results, prove that∫
Ω

ϕi = 1
3

area
(
suppϕi

)
.

Prove now that the sum of all nodal basis functions is the unit function∑
j

ϕj ≡ 1.

(To do this, compare nodal values of both functions and note that constant functions
belong to Vh.) Finally use the following trick based on the preceding identity∫

Ω

ϕi =
∑
j

∫
Ω

ϕjϕi

to prove that
1
3

area
(
suppϕi

)
=
∑
j

mij

and therefore the i-th diagonal element of the lumped mass matrix can be computed
by adding all the elements of the i-th row of the mass matrix.

3. Generalized eigenvalues from FE approximation. Assume that we are given
a discrete problem find λh such that there exists 0 6= uh ∈ V 0

h satisfying∫
Ω

∇uh · ∇vh = λh

∫
Ω

uh vh ∀vh ∈ V 0
h ,

where V 0
h is any subspace of H1

0 (Ω) for which we have a basis {ϕi : i = 1, . . . , N}.
Following the ideas of Lesson 1 (when we converted the Galerkin equations to a
system of linear equations), prove that this problem is equivalent to the generalized
eigenvalue problem[

find λh such that there exists 0 6= u ∈ RN satisfying

Wu = λhMu.

for the matrices

wij =

∫
Ω

∇ϕj · ∇ϕi, mij =

∫
Ω

ϕj ϕi.

82

Lesson 5

Evolution problems

There are many different approaches in the application of finite element techniques to
evolution problems. In fact, there are also many different types of evolution problems. In
this lesson we are going to concentrate on two evolution equations:

• the heat equation, a good example of parabolic behavior (transient diffusion),

• the wave equation, the simplest model of hyperbolic equation of the second order.

We can group the FEM-based approaches for these evolution equations:

• methods that discretize space and time simultaneously, and

• methods that discretize one of these variables and then the other.

We are going to do as follows. We’ll first take the heat equation and do time discretization
with finite differences and then space discretization with finite elements. Afterwards we
will see how discretization only of the space variable with FEM leads to a system of
ordinary differential equations, for which you can use a great variety of methods. (This
approach is often called the method of lines.) If we use a finite element type method for
the time variable we end up with something very similar to applying a FEM discretization
at the same time to space-and-time. Finally, we’ll go for the wave equation and show some
basic ideas.

1 Forward Euler FEM for the heat equation

First of all, let us state the problem. We are given a polygon Ω in the (x, y)-variable space.
We are going to consider only Dirichlet boundary conditions, since they are usually more
complicated. The extension to mixed boundary conditions is not very difficult, provided
that the Dirichlet and Neumann boundaries remain fixed in time. The origin of times will
be t0 = 0. We will state the problem for all positive time values, from 0 to ∞, although
we will be mainly thinking of solving the problem in a finite time interval (0, T). The

83

problem is the following: find u(x, t) = u(x, y, t) such that
ut = ∆xu+ f, in Ω× (0,∞),

u(· , 0) = ω, in Ω,

u(· , t) = g, on Γ for all t > 0.

Many new things again, so let’s go step by step:

• ut is the partial derivative with respect to t and ∆xu is the Laplacian in the (x, y)-
variables.

• f : Ω× (0,∞)→ R is a given function of time and space.

• g : Γ × (0,∞) → R is a given function of time and of the space variable on the
boundary. It gives the enforced Dirichlet boundary condition for all times.

• When both f and g are independent of time, there is still evolution, but we will
see that it is just a transient state converging to a steady-state solution. We’ll talk
about this on the section about stability.

• ω : Ω→ R is a function of the space variable and represents the initial condition.

In principle, we are going to make ourselves our life simple by assuming that u0 is a
continuous function (and we can evaluate it without difficulty) and that f and g0 are
continuous in the time variable.

1.1 Time semidiscretization with the forward Euler method

Let us first take a partition in time, which can be non-uniform (variable time-step)

0 = t0 < t1 < t2 < . . . < tn < . . .

If our time interval is finite (as it is for any practical problem), the partition finishes in a
certain point tM . This is not important right now. The local time-step is

δn = tn+1 − tn.

For us, doing a time step will be moving from an already computed approximation if time
tn to time tn+1. The time-steps δn are given as if they were known from the beginning.
Unless you are taking it to be uniform (which is not really a very good idea in most
practical situations), time-steps are computed with information about the behavior of the
numerical solution solution and about the performance of the method as we proceed in
discrete time. For the sake of exposition, we do as if we already knew all time-steps in
advance.

We freeze the source term and boundary data at each time tn by simple evaluation

fn = f(· , tn) : Ω→ R, gn = g(· , tn) : Γ→ R.

84

When the data functions are not continuous we should be willing to average in a time
interval around tn instead. Time semidiscretization strives to obtain approximations

u(· , tn) ≈ un : Ω→ R.

The first attempt we will do is the forward (or explicit) Euler method. It consists of
looking at the equation in discrete time n and approximating a time derivative in this
time by the forward quotient

φ′(tn) ≈ φ(tn+1)− φ(tn)

tn+1 − tn
=
φ(tn+1)− φ(tn)

δn
.

If we take the heat equation and use this forward Euler approximation, we obtain the
recurrence

un+1 − un

δn
= ∆un + fn

or in explicit form
un+1 = un + δn∆un + δnf

n.

This recurrence is started at n = 0 with the initial data function u0 = ω. Bullet points
again:

• Note that all functions are functions of the space variable, so the Laplace operator in
space variables is just the Laplace operator. Time is now discrete time and appears
as the n superscript everywhere.

• In principle this formula gives you un+1 from un and the source function. Where is
g? We’ve lost it in the way! There seems to be no way of imposing the boundary
condition without entering in open conflict with the recurrence.

• There’s more. If you begin with u0, you take two derivatives to compute u1. Then
another two to compute u2 and so on and so on. You had better have many space
derivatives available! How could we possibly think of approximating un by a finite
element function, which only has the first derivatives?

The answer to the last two questions comes from the use of a weak formulation for the
recurrence. The price will be losing this explicit recurrence character that made the
forward Euler approximation really explicit.

Consider Green’s Theorem applied to un. Yes, I know we want to compute un+1 (we
already know un). Follow me anyway. We have∫

Ω

(∆un) v +

∫
Ω

∇un · ∇v =

∫
Γ

(∂nu
n) v.

Multiply this by δn and for lack of knowledge of the Neumann boundary data function,
impose v to be zero on the boundary. We have therefore

δn

∫
Ω

(∆un) v + δn

∫
Ω

∇un · ∇v = 0, for all v such that v = 0 on Γ.

85

Substitute now the Laplacian of un, that is

δn∆un = un+1 − un − δnfn

and move what you know (data and functions at time n) to the right-hand side to obtain∫
Ω

un+1v =

∫
Ω

un v − δn
∫

Ω

∇un · ∇v + δn

∫
Ω

fn v, v = 0 on Γ.

Now there seems to be room for imposing the missing Dirichlet boundary condition,
implicitly at time n + 1, since the test is satisfying the homogeneous Dirichlet boundary
condition. The sequence of problems would be consequently: begin with u0 and then for
each n,

find un+1 ∈ H1(Ω) such that

un+1 = gn+1, on Γ,∫
Ω

un+1v =

∫
Ω

un v − δn
∫

Ω

∇un · ∇v + δn

∫
Ω

fn v, ∀v ∈ H1
0 (Ω).

Recall (last section of the previous Lesson) that

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0, on Γ}.

The problem looks more like what we have been solving so far1. Only there is no stiffness-
term for the unknown, which is a problem (there is no way we will obtain ellipticity of
the bilinear form in energy norm), and at the same time there is a stiffness term in the
right–hand side, which is more complicated than usual. Don’t worry, we are getting near
something reasonable.

1.2 Full discretization

We are there. Take a finite element method. Any of the methods exposed in Lessons 1,
2 and 3 will do the job. We have the space

Vh ⊂ H1(Ω)

associated to a triangulation of the domain, a nodal basis, the concept of Dirichlet nodes
(all nodes on the boundary) and the subspace

V 0
h = Vh ∩H1

0 (Ω) = {vh ∈ Vh : vh = 0, on Γ}.

Nodes are numbered as usual and we take two lists: Dir, the one of indices of Dirichlet
nodes, and Ind, the remaining nodes. The Dirichlet nodes are then

pi, i ∈ Dir.

1For knowledgeable mathematicians, I know, this sequence of problems is giving you the creeps. It is
so ill-posed! You will have to wait to the fully discretized problem to get some satisfaction.

86

The main point now is to substitute all the infinite–dimensional elements of the problem
find un+1 ∈ H1(Ω) such that

un+1 = gn+1, on Γ,∫
Ω

un+1v =

∫
Ω

un v − δn
∫

Ω

∇un · ∇v + δn

∫
Ω

fn v, ∀v ∈ H1
0 (Ω),

by the their discrete counterparts, which is easy: for each n we have to
find un+1

h ∈ Vh such that

un+1
h (pi) = gn+1(pi), ∀i ∈ Dir,∫
Ω

un+1
h vh =

∫
Ω

unh vh − δn
∫

Ω

∇unh · ∇vh + δn

∫
Ω

fn vh, ∀vh ∈ V 0
h .

This looks more like something we can do. Before going for matrices, we have to give a
starting point for this recurrence: u0

h ∈ Vh can be computed by interpolating in the nodes
of the grid the initial data function ω. This is not the best option, but it is definitely the
simplest one.

We need to reintroduce matrices and vectors to give a simpler idea of what we are
doing here in each time step. The nodal values of unh are given in the vector un. They
are divided into values on free/interior nodes unInd and values on the Dirichlet nodes unDir.
Actually, the Dirichlet condition states that

un+1
Dir = gn+1,

where gn+1 is the vector of values of gn+1 = g(· , tn+1) on Dirichlet nodes.
We are going to pick up two pieces of the mass matrix

MInd =
[∫

Ω

ϕjϕi

]
i,j∈Ind

, MDir =
[∫

Ω

ϕjϕi

]
i∈Dir,j∈Ind

.

The matrix MInd is square shaped, with as many rows as there are interior nodes. On the
other hand MDir is rectangular, with as many rows as there are interior nodes and one
column per Dirichlet node. We will glue them together in the rectangular matrix

Mall =
[

MInd MDir

]
.

This division is made so that we can write products

Mallu
n+1 = MIndu

n+1
Ind + MDiru

n+1
Dir .

Its rectangular shape reflects the fact that testing with nodal basis function is ignored.
We similarly construct the matrices WDir, WInd and Wall.

At this stage of the course we have seen this kind of arguments enough times so that
you will easily recognize that the step in variational form

find un+1
h ∈ Vh such that

un+1
h (pi) = gn+1(pi), ∀i ∈ Dir,∫
Ω

un+1
h vh =

∫
Ω

unh vh − δn
∫

Ω

∇unh · ∇vh + δn

∫
Ω

fn vh, ∀vh ∈ V 0
h ,

87

is the same as the system[
un+1

Dir = gn+1,

Mallu
n+1 = Mallu

n − δnWallu
n − fn,

where fn is the vector with elements∫
Ω

fn ϕi, i ∈ Ind.

We can also write each step as the solution of the system

MIndu
n+1
Ind = Mallu

n − δnWallu
n − fn −MDirg

n+1

to compute only values on free nodes. Values on Dirichlet nodes are incorporated to this
formulation but we have also to remind ourselves to keep them in the full vector un+1,
that will be used in the next time–step.

1.3 Some features of the method

Making the method really explicit. It may come to you as a surprise to see that
working the explicit equations of the forward Euler method with Finite Elements you end
up with a system to be solved in each time–step, so the explicit method is not so explicit
after all. Note however that:

• The matrix is always the same and it is always the mass matrix, so you have good
conditioning of the system together with symmetry and positive definiteness.

• Therefore if you do some preprocess (a factorization of the matrix) or you build a
good preconditioner, it’s going to be useful for all time steps. Moreover, for each
time step you have a linear system that you can try to solve with an iterative method
(Conjugate Gradient looks like the best option), but you have a guess of the starting
point for the iterations: why not begin with the value in the previous time?

• If you are not happy yet with the implicit character of these equations, you can
substitute the mass matrix (at least the one that appears on the left hand side) by
the lumped mass matrix, which is diagonal. A diagonal system is immediate to
solve.

Diffusion or propagation of heat? There are some good reasons to make the method
completely explicit: you compute the time steps faster, since you don’t have to solve any
linear system, no matter how well conditioned this is. There are reasons not to make it
fully explicit. In fact the argument I’m going to give to you here is somewhat tricky and
you’ll have to take it with a grain of salt. The real reason for going implicit is given in
the stability analysis.

Let us consider just the first time step in the case where f ≡ 0 and g ≡ 0. We only have
to compute the free nodes in all steps, because the boundary condition is homogeneous.

88

Let us consider the P1 method and let us take a free node that is completely surrounded
by free nodes. As initial condition we take an impulse in that node, that is, if the node is
given the index i, we are starting with

u0
h = ϕi.

In matrix form we are beginning with the vector ei, that has all components zero but the
i-th that is one. This is the system we solve:

MIndu
1
Ind = MIndei − δ0WIndei.

Note that the i-th row of MInd and WInd is the only one used in the right-hand side. It
contains non–zero elements only on the positions of adjacent (neighboring) nodes. The
vector MIndei − δ0WIndei propagates the unit value on the i-th node to its neighboring
nodes. All other elements of this vector are still zero.

If you do mass lumping, that’s all that is going to be non–zero in u1. In the next step,
we will reach the following set of neighbors (neighbors of neighbors of the i-th node).
What we are doing here is propagating heat at finite speed: the physics are all wrong!
Heat diffusion is done at infinite speed. A unit impulse in time zero heats all the domain
at any positive time. In truth, the values far from the heating source are very, very small
at small times, but they are non zero. If we keep the mass matrix without lumping, at
least it looks like we can reach all nodes in the first time step. The reason is the fact
that M−1

Ind has most (if not all) elements non–zero. The process is much more similar to
diffusion, although what we call diffusion, that’s done by W−1

Ind. But I cannot explain why
right now.

Changing spaces with time. In some cases, with highly varying source terms and
boundary conditions it could be wiser to change the finite element space from time to
time, maybe even at all time–steps2. Think in the step n 7→ (n+ 1). Assume that unh we
computed with a P1 finite element on a given triangulation. The space is denoted Vh,n
and V 0

h,n is the subspace obtained by eliminating the Dirichlet nodes. For whichever the

reason, we are going to change grid and compute uhn+1 in a new space Vh,n+1. In principle
these are the discrete variational equations:

find un+1
h ∈ Vh,n+1 such that

un+1
h (pi) = gn+1(pi), ∀i ∈ Dir(n+ 1),∫
Ω

un+1
h vh =

∫
Ω

unh vh − δn
∫

Ω

∇unh · ∇vh + δn

∫
Ω

fn vh, ∀vh ∈ V 0
h,n+1.

It looks the same but it isn’t exactly the same. If you add a superindex with the discrete
time to the nodal bases, you will see that in the left–hand side, you have a usual mass
matrix for the current space ∫

Ω

ϕn+1
j ϕn+1

i .

2This change of space with time is the daily bread in finite element methods for waves, but since we
are taking the heat equation as the first model problem, it’s okay if we have a look at this here.

89

However, since uhn was computed on the old grid, the two matrices that appear on the
right–hand side are ∫

Ω

ϕnjϕ
n+1
i and

∫
Ω

∇ϕnj · ∇ϕn+1
i .

These matrices do not need even to be square. But there’s more. The very nice idea of
assembly is much more complicated if the triangulations are not related and what we did
in Lesson 2 is definitely not valid here anymore. With this näıve approach things really
get messy.

What can be done in practice is taking a very different approach, consisting of pre-
processing the solution in time n to move it to the grid of time n+ 1. In essence it is like
interpolating unh to the new space Vh,n+1. This can be a somewhat complicated process
but has the advantage that the unh we input in the right–hand side is now in the same
space as the un+1

h we want to compute and the assembly process can be used again.

1.4 Stability analysis

Let’s simplify again the problem to have source term and boundary conditions that do
not depend on time. The problem is therefore

ut = ∆xu+ f, in Ω× (0,∞),

u(· , 0) = ω, in Ω,

u(· , t) = g, on Γ for all t > 0,

with f and g independent of time. If we ignore the initial condition we can look for the
only steady–state solution to the problem[

−∆ulim = f, in Ω,

ulim = g, on Γ.

Assume now that we know all Dirichlet eigenvalues and eigenfunctions of the Laplace
operator in Ω: [

−∆φk = λkφk, in Ω,

φk = 0. on Γ.

The solution to the heat diffusion problem is

u(x, t) = ulim(x) +
∞∑
k=1

ck e
−λk tφk(x), ck =

∫
Ω

(ω − ulim)φk.

This formula3 shows that the solution goes exponentially fast to the steady–state solution.
The occurrence of negative exponentials at increasing velocities (λk diverges as k goes to
infinity) makes the initial times very hard to compute with precision.

3You might (should) recognize it from your course(s) on differential equations. It is the solution
obtained by separation of variables

90

In case we are dealing with zero data

f ≡ 0, g ≡ 0,

the formula for the solution is really simple: it’s just diffusion of the initial condition
towards the zero solution

u(x, t) =
∞∑
k=1

ck e
−λk tφk(x), ck =

∫
Ω

ω φk.

Let us see what the numerical method does. Since boundary conditions vanish we don’t
have to take into account Dirichlet nodes. In the n-th time-step we solve

MIndu
n+1
Ind = MIndu

n
Ind − δnWIndu

n
Ind.

Let us drop the Ind subindex and keep in mind that we are only computing in the interior
nodes. Also for simplicity assume that δn = δ for all n, that is, we are using a fixed time
step. This is the very simple n-th time step:

Mun+1 = Mun − δWun.

There is only a finite number of linearly independent eigenvectors (that are nodal
values of the discrete eigenvectors):

Wφk = λh,kMφk.

Maybe you should go back to Section 4 of Lesson 4 to review this. Recall that λh,k ≥ λk
approximates this k-th exact eigenvalue for h sufficiently small. Take u0 = φk as initial
condition in the recurrence that determines the discrete time steps. Then the equation
for the first time step is

Mu1 = Mφk − δWφk = (1− λh,kδ) Mφk.

Therefore, using the fact that M is invertible, we have u1 = (1− δλh,k)φk. The following
time steps are similar and we obtain the following formula for all the time steps

un = (1− λh,kδ)nφk.

Note that λh,k is trying to approximate λk and φk is trying to approximate the nodal values
of φk. The formula for the recurrence is trying to approximate the diffusive solution

e−λkδnφk = e−λktnφk.

Is it doing a good job? Independently of whether this approximation is good or not, let
us just look at the asymptotic behavior. The exact solution goes to zero as n goes to
infinity. What about the discrete solution? Well, not always. It will do the right thing if

|1− λh,kδ| < 1,

91

which is equivalent (note that δ and λh,k are positive) to

λh,kδ < 2.

This should be satisfied for all discrete eigenvalues. Since we have ordered them from
smallest to largest, it has to be satisfied by the largest of them

λh,N(h)δ < 2.

Why do I say that it has? The fact is that any initial condition can be decomposed as

u0 =

N(h)∑
k=1

ckφk

and the corresponding discrete evolution is therefore

un =

N(h)∑
k=1

ck(1− λh,kδ)nφk.

The orthogonality condition of the discrete eigenvector proves that un goes to zero as
n→∞ (that is, it has the correct asymptotic value) if and only if all conditions λh,kδ < 2
hold.

Let’s discuss the condition
λh,N(h)δ < 2.

If we take the fixed time-step to begin with, the condition is of the form

λh,N(h) < 2/δ.

Note that λh,N(h) ≥ λN(h). If we take a very fine grid (a very precise finite element
method) it is very likely that you are getting to capture a very large eigenvalue and the
stability condition does not hold any longer. This conditional stability says that given
the time-step you can only try to do this good with finite elements, but if you try to be
too precise you lose stability. This may be a shock to you. One would think that each
part of the discretization process can be done as precisely as possible without taking care
of the others. The conditional stability denies that.

If you fix the finite element grid, the inequality can be read as

δ < 2/λh,N(h)

which says that you have to take time-steps that are short enough in order not to lose
stability4. It is difficult to make oneself an idea of how the largest discrete eigenvalue
grows with finer grids. For the one dimensional problem the precise formula is known.
Given the variety of polygonal domains you can think of, the question is less clear in two
dimensions.

4People in the ODE discretization community call this problem stiff and say that explicit methods
are not linearly stable and should not be applied (or applied with great care) to stiff problems. More on
this in Section 3.

92

Remark. In fact, the term (1 − λh,kδ)n can be oscillating even when going to zero, so
we even might like it to be positive in addition to convergent to zero. The condition is
then λh,kδ < 1.

What else? Convergence of course. Well, let’s not do this here. The issue becomes
really difficult. Note only that: (a) use of forward Euler in time means you should expect
no more that error proportional to time step (order one); (b) the effort made in the space
discretization should agree with the low order in time; (c) imposition of non-homogeneous
Dirichlet conditions becomes openly critical here. Doing the simplest thing here makes
you lose convergence order. You have to look at the theory (and we are so not going to
to that now) to understand why. Anyway, never use high order in space with low order
in time. You are wasting your efforts. Second, be careful with stability. You don’t have
it for free! If you have fixed your time-step you cannot try to be too precise in space.

2 Backward Euler FEM for the heat equation

It has taken time, but we have had a close look at the very simplest discretization method
for the heat equation. If you have your FEM code for the steady state problem, it is easy
to create a FEM code for the forward Euler and FEM discretization of the heat equation.
We move now to improve our method.

2.1 Time semidiscretization with the backward Euler method

First thing we have to improve is conditional stability. That condition is definitely not
the best thing to have, in particular since you really don’t know precisely whether it holds
or not unless you compute the largest generalized eigenvalue of W.

We begin from scratch. Almost. The backward Euler discretization uses the same
quotient as the forward Euler method but to approximate the value of the derivative in
discrete time (n+ 1)

φ′(tn+1) ≈ φ(tn+1)− φ(tn)

tn+1 − tn
=
φ(tn+1)− φ(tn)

δn
.

Correspondingly, we look at the heat equation in time tn+1 and impose the backward
Euler approximation

un+1 − un

δn
= ∆un+1 + fn+1,

or equivalently
−δn∆un+1 + un+1 = un + δnf

n+1.

Let’s not forget the boundary condition, which now enters the game in a more standard
way

un+1 = gn+1, on Γ.

Equation and boundary condition constitute a boundary value problem like those we have
been studying all along this course. Note that the diffusion parameter is the time step
(it is very small) but that this parameter is also multiplying the source term. If you

93

formally take it to zero, what you obtain is a constant solution, which is what happens
with evolution when you stop the clock counting times.

The boundary value problem to obtain un+1 has nothing special. Its weak formulation
is done in the usual way, as if there was no time in the equation

find un+1 ∈ H1(Ω) such that

un+1 = gn+1, on Γ,

δn

∫
Ω

∇un+1 · ∇v +

∫
Ω

un+1v =

∫
Ω

un v + δn

∫
Ω

fn+1 v, ∀v ∈ H1
0 (Ω).

2.2 Full discretization

Taking the finite element space instead of the exact Sobolev space, we obtain a sequence
of problems

find un+1
h ∈ Vh such that

un+1
h (pi) = gn+1(pi), ∀i ∈ Dir,

δn

∫
Ω

∇un+1
h · ∇vh +

∫
Ω

un+1
h vh =

∫
Ω

unh vh + δn

∫
Ω

fn+1 vh, ∀vh ∈ V 0
h .

The recurrence (the time-steps) has to be started with an initial condition of u0
h given,

as we had in the explicit method. You can go back to the previous section and you will
notice that the only serious change is the stiffness term changing sides. It is implicit now.

Using the same notations for the vectors of unknowns and for the pieces of the matrices,
we have a fully implicit method now un+1

Dir = gn+1,(
δnWall + Mall

)
un+1 = Mallu

n + fn+1,

Note again that the stiffness matrix has changed sides in the system. The system to be
solved in each time step is actually(

δnWInd + MInd

)
un+1

Ind = Mallu
n + fn+1 −

(
δnWDir + MDir

)
gn+1.

You can take from here a first idea: the cost of programming the forward and the backward
Euler is exactly the same. The main difference is that in the implicit method you have to
solve a linear system in each time step and there is not diagonal approximation for the
corresponding matrix. The matrix itself varies with time-step, but if you have to look for
a preconditioner, you just have to take care of the stiffness matrix, which is the bad guy
here (mass=good, stiffness=bad) in terms of conditioning. For fixed time stepping, the
matrix is always the same, by the way.

If you put a point source in time zero, it diffuses instantaneously to the whole domain
thanks to the inverse of the matrix of the system.

94

2.3 Stability analysis

With vanishing boundary conditions and zero sources as well as with fixed time-step we
solve the recurrence

(δW + M)un+1 = Mun

to follow the free evolution of the system with initial condition u0. If u0 = φk (we use
the same notation as in the corresponding subsection for the forward method), then the
eigenvectors satisfy

(δW + M)φk = (1 + λh,kδ)Mφk.

Therefore, it is simple to check that

un = (1 + λh,kδ)
−nφk.

This discrete evolution is always correct, since 0 < (1 + λh,kδ)
−1 < 1. The method is

therefore unconditionally stable. Expected convergence is similar to the one of the
forward Euler approximation, since both time discretizations have the same order. What
changes here is stability.

3 Doing first space and then time

In one of the exercises I’ve proposed to have a look at the scheme developed by John
Crank and Phyllis Nicolson using the same quotient to approximate the average of the
derivatives in both points. It leads to a sort of average of the forward and backward Euler
methods5. This is an easy way of increasing order of convergence in time: formally it
goes up to order two. Doing better with finite differences in time requires using more
time points for each steps. We could also forget about finite differences in time and do
Galerkin (finite elements) also in that variable.

Instead we are going to try something else. The following approach is the origin of
many ideas but definitely requires that your space triangulation remains fixed, so forget
about it if things are changing really fast and you want to remesh from time to time.

We are back to the heat diffusion problem. Here it is again
ut = ∆xu+ f, in Ω× (0,∞),

u(· , 0) = ω, in Ω,

u(· , t) = g, on Γ for all t > 0.

For the moment, let us think of time as an additional parameter, forget the initial condition
and deal with this as an elliptic problem. For each t, the space function u = u(· , t)
(mathematicians, forgive me for not changing the name) satisfies:[

−∆u+ ut = f, in Ω,

u = g, on Γ.

5Note that properly speaking the Crank-Nicolson scheme uses also finite differences for the space
variables.

95

Using Green’s Theorem we obtain a weak formulation u = g, on Γ,∫
Ω

∇u · ∇v +

∫
Ω

ut v =

∫
Ω

f v, ∀v ∈ H1
0 (Ω).

Hey, teacher! Your forgot to write the space for u! No, I didn’t. We can try to think of u
as a function that for each t, gives an element of H1(Ω), but I really prefer not to write
the correct spaces. First of all, because they are complicated. Second,... because they are
complicated, if we want to have the right spaces where we are certain to have a solution
and not some safe spaces where everything looks nice but we will never be able to show
that there is a solution.

Instead, let us go to discretization. The idea is the same: for each time we associate
a function in the finite element space (it will be the same space for all times). So, fix Vh
and V 0

h as usual. A time-dependent element of Vh is something of the form

uh(t,x) =
N∑
j=1

uj(t)ϕj(x).

The coefficients vary with time, but the global basis is always the same since the triangula-
tion is fixed. In fact, when we are dealing with the nodal basis functions uj(t) = uh(t,pj),
so we are following the nodal values of the discrete function. The partial derivative of
this function with respect to time is

N∑
j=1

u̇j ϕj.

Then, the semidiscrete in space problem looks for uh such that for all t
uh(· , t) ∈ Vh,

uh(p, t) = g(p, t), for every Dirichlet node p ,∫
Ω

∇xuh · ∇vh +

∫
Ω

uh,t vh =

∫
Ω

f vh, ∀v ∈ V 0
h .

We also need an initial condition

uh(· , 0) =
∑
j

uj(0)ϕh = u0
h,

where u0
h ∈ Vh approximates the initial condition ω. If we decide ourselves for interpolating

data, this means that we are giving an initial condition to the coefficients

uj(0) = ω(pj), ∀j.

The problem can be easily written using these coefficients
ui(t) = g(pi, t), ∀i ∈ Dir,

N∑
j=1

(∫
Ω

∇ϕj · ∇ϕi
)
uj(t) +

N∑
j=1

(∫
Ω

ϕj ϕi

)
u̇j(t) =

∫
Ω

f ϕi, ∀i ∈ Ind.

96

This system holds for all t. This is a somewhat non-standard but simple differential
system. We can get rid of the algebraic (non-standard) part by simply substituting the
Dirichlet conditions inside the formulation to obtain∑
j∈Ind

wijuj(t) +
∑
j∈Ind

miju̇j(t) =

∫
Ω

fϕi −
∑
j∈Dir

(
wijg(pj, t) +mijgt(pj, t)

)
, ∀i ∈ Ind.

This looks much more like a system of linear differential equations. Let us simplify the
expression by improving notation. We consider the following functions of time:

fi(t) =

∫
Ω

f(· , t)ϕi, i ∈ Ind,

gj(t) = g(pj, t), j ∈ Dir.

The system is therefore∑
j∈Ind

wijuj(t) +
∑
j∈Ind

miju̇j(t) = fi(t)−
∑
j∈Dir

(
wijgj(t) +mij ġj(t)

)
, ∀i ∈ Ind.

You will have noticed that this way of discretizing the problem, imposes the need to com-
pute the time derivative of the Dirichlet data. It’s because they are essential (Neumann
data would appear like source terms, happily placed inside integral signs). If you want
to avoid this derivative of data, you have to deal with the algebraic-differential system as
was first obtained.

Using the matrix notation introduced in the first section of this lesson, we can write

WInduInd + MIndu̇Ind = f −WDirg −MDirġ.

Now, we write everything together, more in the style of how we write differential systems:[
uInd(0) = u0,

MIndu̇Ind = −WInduInd + f −WDirg −MDirġ.

This is a linear system of differential equations (with initial values) given in implicit form.
To make it explicit you would have to premultiply by M−1

Ind. In principle you don’t have
to compute the inverse of the mass matrix to know how to multiply by it. The reason is
the fact that

the vector M−1
Indv is the solution to the system MIndx = v.

Therefore, you just need to know how to solve linear systems with MInd as matrix. You
don’t even need that much. Most packages that solve numerically systems of differential
equations (with Runge-Kutta methods for instance) already consider the implicit situa-
tion, where the derivative is premultiplied by an invertible matrix.

This approach allows you to use high order in space and high order in time very easily,
because the processes are separated. In fact, many people in the numerical ODE commu-
nity use the heat equation after space discretization as a benchmark for their methods,
since the resulting system is stiff. Remember all those fastly decaying exponentials in
the separation of variable solutions? In the differential system they become large neg-
ative eigenvalues, which are difficult to handle. For stiff problems, the safe bet is the
use implicit methods. Anything explicit will be understandably conditionally convergent,
requiring short time steps or a very rigid step control strategy.

97

Remark. If you apply the forward or backward Euler method to this differential system
you obtain the methods you had in Sections 1 and 2 if:

• g is independent of time

• g depends on time but you substitute the occurrence of ġ in the n-th time step by
the quotient (gn+1 − gn)/δn.

This coincidence of lower order methods in the simplest cases is something you find over
and over in numerical analysis.

4 Some ideas about the wave equation

There is a long stretch since the beginning of this course, ninety-something pages ago.
We need to put an end to it, but it would be wrong (for me) to end a lesson of evolution
problems with nothing on the wave equation6. You’ll see how this is very simple to
introduce. To make it simpler we will use homogeneous Dirichlet conditions in the entire
boundary of the domain.

The wave propagation problem is then
utt = ∆xu+ f, in Ω× (0,∞),

u(· , 0) = u0, in Ω,

ut(· , 0) = v0, in Ω,

u(· , t) = 0, on Γ for all t > 0.

If we try the finite difference in time approach, the simplest thing to do is to apply the
central difference approximation (some people call this Newmark’s method7) to the second
derivative. If we take a fixed time step, this means approximating

φ′′(tn) ≈ φ(tn+1)− 2φ(tn) + φ(tn−1)

δ2
.

When applied to the time-variable in the wave equation we obtain the explicit time step

un+1 − 2un + un−1

δ2
= ∆un + fn.

After doing the weak formulation and introducing finite element spaces and bases, we end
up with

Mun+1 = 2Mun −Mun−1 − δ2Wun + δ2fn.

6You can easily claim that I’m not dealing with conservation laws either. True. You are right. That’s
not my turf.

7As far as I know about this, the method proposed by Nathan Newmark is something more general
destined to approximate second order equations. There is however a developed habit of calling this central
difference approximation for the time derivative in the wave equation, Newmark’s method.

98

(Only free nodes appear in all the expressions, since we have taken homogeneous Dirichlet
boundary conditions). The initial value for u0 is easy. You have data. You still need u1

(the nodal values of uh1 . For that, you can do very easy (and not very well) by taking a
Taylor approximation

u1 = u0 + δv0,

or take a false discrete time −1 and use the equation

u1 − 2u0 + u−1

δ2
= ∆u0 + f0

together with the central difference approximation

u1 − u−1

2δ
= v0

to obtain the equation
u1 = 1

2
δ2∆u0 + u0 + δv0 + 1

2
δ2f0.

Then you need to give a weak formulation of this too. And do all the finite element stuff.
Nothing you don’t know how to do. Some really fast last strokes:

• Space discretization has made the equations implicit but it’s only with the mass
matrix. To obtain the good physics (finite velocity of propagation), the use of the
lumped mass matrix is highly recommended. Wait for a couple of points to know
more about this.

• The method is explicit so it is going to be conditionally stable. The stability
condition is a bit harder to derive in this situation. It reads like

δ2λh,N < 4

and it is called a Courant-Friedrichs-Lewy condition8 and always refered by the
initials CFL condition.

• Things with the wave equation happen quite fast so most people are willing to
accept the short time-step imposed by a CFL condition, since they want to observe
the propagation anyway.

• Implicit methods have the advantage of unconditional stability but get the physics
wrong. When you are trying to follow the propagation of wave-fronts you sort of
dislike the diffusion that would be caused by the presence of the inverse of the
stiffness matrix.

• Wave propagation is however a delicate matter. If you take the explicit method,
made fully explicit by the use of mass lumping, you move (in the P1 method) from
node to node in each time step. That is, the speed of numerical propagation is

8We have already met Richard Courant, moral father of the P1 element. Now, meet Kurt Friedrichs
and Hans Lewy. All three of them were German (Lewy’s birthplace counts as Poland nowadays) and
moved to America.

99

controlled by the time step. If you take a very, very short time-step to be sure that
you are satisfying the CFL condition, you may be going too fast, so you have to
play it safe but not too safe. This balance between stability and correct speed of
propagation makes the discretization of wave phenomena a difficult but extremely
interesting problem.

5 Exercises

1. Crank-Nicolson and FEM for the heat equation. The Crank-Nicolson9 scheme
consists of using the quotient to approximate the average of the derivative in tn and
tn+1:

1

2
φ′(tn+1) +

1

2
φ′(tn) ≈ φ(tn+1)− φ(tn)

tn+1 − tn
=
φ(tn+1)− φ(tn)

δn
.

We can apply this to the heat equation and propose this problem as n-th time step: un+1 − un
δn

=
1

2

(
∆un + ∆un+1

)
+

1

2
(fn + fn+1), in Ω

un+1 = gn+1, on Γ.

• Write the preceding time-step as a reaction-diffusion problem to compute un+1.

• Write a weak formulation taking care of not having the Laplacian of un in the
right-hand side but a stiffness term (you will have to use Green’s formula twice,
once in tn and once in tn+1).

• Write the discrete equations obtained from the FEM discretization of the weak
formulation.

• Show that the method is unconditionally stable (use the same particular case:
fixed time-step, f ≡ 0 and g ≡ 0).

2. Full discretization of the wave equation. We have already said that from the
three terms recurrence

un+1 − 2un + un−1

δ2
= ∆un + fn,

a finite element method gives you this other full discrete three-term recurrence

Mun+1 = 2Mun −Mun−1 − δ2Wun + δ2fn.

Prove it. (You just have to follow step by step what we did for the heat equation
and the forward Euler discretization. Note again the we have dropped the subscript
Ind everywhere.)

9This method is named after John Crank and Phyllis Nicolson in the aftermath of WWII. The Math-
ematics building at Brunel University in West London is called after John Crank, a fact that, apparently,
many students there find hilarious.

100

3. Space semidiscretization of the wave equation. We begin again
utt = ∆xu+ f, in Ω× (0,∞),

u(· , 0) = u0, in Ω,

ut(· , 0) = v0, in Ω,

u(· , t) = 0, on Γ for all t > 0.

(Note that we have homogeneous Dirichlet boundary conditions). Taking the ap-
proach of space-first, prove that we arrive at a system of differential equations of
the second order:

MIndüInd + WInduInd = f .

You just have to follow carefully the same process for the heat equation, with the
additional simplification of having zero boundary conditions. To finish, note that
we have two initial conditions that we can incorporate to the differential system.

101

Lesson 6

A posteriori error estimation and
adaptivity

The general goal of a posteriori error estimation is the search for a computable
quantity which is cheap to calculate from the numerical solution, and which gives an upper
bound of the error committed in the simulation without being too distant from this. In
this lesson we are going to review some basic methods for a posteriori error estimation
and we will see what can be expected from them. We will also learn something about
adaptivity, that is, mesh-refinement led by an a posteriori error estimate that leads to
an automatic sequence of solutions that approaches the exact solution at the desired level
of precision. I want to emphasize that this area is hot at the time of writing these notes
and that there are still many difficult open questions in the understanding of adaptivity.

1 Goals and terminology

1.1 Error estimators

If uh is the Finite Element solution of a problem whose exact solution is u and the natural
norm for the problem (the one in which we have obtained a priori estimates) is ‖ · ‖, then
an a posteriori error estimate is any quantity

Esth := Est(uh, data)

such that there exist two positive constants C1, C2, independent of the solution and of the
data, and such that

C1 Esth ≤ ‖u− uh‖ ≤ C2 Esth.

The second inequality is probably the most important one: it is called reliability of
the estimator and it says that the estimator gives an upper bound of the error. The first
inequality (efficiency) shows the impossibility that the estimator rejects a well-computed
solution. One desirable property of a good a posteriori estimator is the closeness of C1 and
C2 to the value one. In fact, there is an entire school of thought emphasizing estimators
for which the upper bound constant C2 is explictly known.

102

Sometimes reliability is not reachable for a particular estimator and we accpet in-
equalities of the form

‖u− uh‖ ≤ C2 Esth + Osc(h),

where the term Osc(h) (oscillation error) must converge to zero and can be estimated
using the problem data, and not its solution. This term is typically related to the variation
(oscillation) of the data function. It is also common to include data oscillation in the error
estimators themselves.

A practical demand on the estimator (which, I insist, can only depend on the numerical
solution and on the data) is the fact that it has to be fast to compute, that is, the time
needed to compute it has to be much lower than the time devoted to solving the problem.
Additionally, the reliability bound cannot use any kind of smoothness assumption on the
data (except those that hold true for every solution). The reason for this is that we want
to estimate the error for solutions with minimal regularity, especially when we do not
know if the solution is smooth or not.

A final demand that is applied to most estimators is their local efficiency. This will
happen in different forms and shapes, but the idea can be condensed in a couple of lines.
We expect the estimator to be built from a list of nodes, elements or edges as

Est2
h =

∑
j

Est2
j,h,

where Estj,h only uses information (about the data and the numerical solution) close to
the element, node or edge tagged with the index j. The estimator is local if we can bound

C3Estj,h ≤ ‖u− uh‖j,

where ‖u − uh‖j is the error in a region that surrounds the element, node or edge j. If
these local domains allow for an inequality of the form∑

j

‖ · ‖2
j ≤ C4‖ · ‖2,

(this means that the global norm can be estimated with local pieces), then the local
efficiency of the estimator implies its global efficiency. Thanks to the local character of
the estimator we can know (as opposed to guess) that if some terms in the error estimator
concentrate most of its value, then the error proceeds from that part of the geometry and
not from some place else. This is less obvious than it looks! It might happen that the
estimator is computed with quantities localized in an area but the error is provoked by
an effect taking place in a different region.

1.2 Adaptivity

Let us now briefly observe a simple adaptive scheme to compute Finite Element solutions,
provided we have a locally efficient and reliable error estimator. We start with an initial
grid and compute the numerical solution uh. The method is iterated in the following way.

103

• We compute the estimator Esth and compare it with a prescribed tolerance

Esth ≤ Tol.

If this inequality holds we consider the solution is good enough and stop the com-
putation. The tolerance needs to be relative to a guess on the size of the solution.
If the inequality does not hold, we continue with the next step.

• We now reorder the local estimators by size,

Est1,h ≤ Est2,h ≤ . . . ≤ EstN−1,h ≤ EstN,h,

and we then decide how many of them we want to consider to lead our refinement
strategy. For instance we can fix a parameter η < 1 and find the maximum number
k such that

η Est2
h ≤

N∑
j=k

Est2
j,h,

that is, we take the minimum number of local estimators that contribute to a η-
significant portion of the global error. Since the local estimators are associated to
geometric elements (triangles, nodes, edges), we then mark these elements. This
way of deciding which local estimators are relevent (ordering and choosing the largest
ones up to a percentage of the error) is commonly referred to as Dörfler marking1.

• We then apply a mesh refinement strategy. This strategy looks for a finer grid
where all marked elements have been refined. This has to be done carfully since we
need the triangulation to satisfy the initial requirements (no hanging nodes) and we
do not want the angles of the triangulation to progressively degenerate. Note that
we might be forced to refine elements that were not in the marked list (in order to
avoid hanging nodes), but we want to avoid the refinement to be extended to too
many elements.

As already mentioned, these three steps are repeated until the desired tolerance is reached.
Some adaptive procedures use mesh coarsening in order to avoid an excessive increase
in the number of global degrees of freedom. Mesh coarsening is logically applied in areas
where there clearly very little error. While coarsening is a useful and interesting technique
it requires rethinking the data structures for the triangulations, since we need to keep some
memory of previous refinements in order to undo them if needed.

1.3 A model problem

In order to be able to focus on the novelties, the remainder of this lesson will be restricted
to a very particular problem. We have a polygon Ω ⊂ R2, whose boundary is subdivided

1Named after Willy Dörfler, a German mathematician who started the standarization of the theory
of adaptive FEM.

104

into Dirichlet and Neumann parts. The problem is
−∆u = f in Ω,

u = 0 on ΓD,

∂nu = g on ΓN ,

for given data functions f : Ω→ R and g : ΓN → R. We are going to assume homogeneous
Dirichlet boundary conditions. Including non-homogeneous conditions complicates what
comes next in non-trivial ways. The essential difficulties are very much the same but
arguments are harder to state and some additional notation is required.

The weak formulation works in the space

V = {u ∈ H1(Ω) : u|ΓD = 0} = H1
ΓD

(Ω)

and can be written as u ∈ V,∫
Ω

∇u · ∇v =

∫
Ω

f v +

∫
ΓN

g v ∀v ∈ V.

We are given a triangulation Th in the usual conditions. The effective finite element space
is

Vh = {uh : Ω→ R : uh|K ∈ P1 ∀K ∈ Th, uh|ΓD = 0}
and the finite element approximation is the solution to the problem uh ∈ Vh,∫

Ω

∇uh · ∇vh =

∫
Ω

f vh +

∫
ΓN

g vh ∀vh ∈ Vh.

Some notation related to the triangulation will be useful. Locally, given K ∈ Th we
consider the sets

• E(K), the edges of K,

• V(K), the vertices of K.

We also consider the global sets

• Eh, all edges of the triangulation, separated into

E◦h ∪ EDh ∪ ENh

(interior, Dirichlet, Neumann), and

• Vh, all the vertices (nodes) of the triangulation, separated into

V◦h ∪ VDh ∪ VNh ,

where, as usual, Dirichlet vertices are all vertices on the Dirichlet boundary (includ-
ing the transition nodes).

105

Given an edge E ∈ Eh, we consider a unit normal vector nE, obtained by rotating π/2
counter-clockwise from the given orientation of the edge (going from the first vertex to
the second vertex of the edge). We also consider the set:

• V(E), the vertices (endpoints) of E.

Finally, when a function u is defined on both sides of an edge, we define its jump

[[u]]E = u+|E − u−|E

where u±|E are the limits obtained from both sides considering the normal vector to be
pointing from − to +. In other words if E = K+ ∪K− for K± ∈ Th and nE points from
K− to K+, then

[[u]]E = u+|E − u−|E, u± = u|K± .

2 A posteriori estimators

2.1 Residual estimators

Given a function w ∈ V = H1
ΓD

(Ω) the residual associated to the weak formulation u ∈ V,∫
Ω

∇u · ∇v =

∫
Ω

f v +

∫
ΓN

g v ∀v ∈ V,

is the expression

R(v;w) :=

∫
Ω

f v +

∫
ΓN

g v −
∫

Ω

∇w · ∇v.

Fixing w, we can understand the residual as a functional R(·;w) : V → R. Moreover

R(v;w) = 0 ∀v ∈ V ⇐⇒ w = u,

that is, the only function that cancels the residual is the solution of the problem. Note
also that the discrete solution uh ∈ Vh,∫

Ω

∇uh · ∇vh =

∫
Ω

f vh +

∫
ΓN

g vh ∀vh ∈ Vh

satisfies
R(vh;uh) = 0 ∀vh ∈ Vh.

The discrete residual is the quantity

Rh := sup
0 6=v∈V

R(v;uh)

‖v‖1,Ω

.

106

Intuitively speaking, the residual measures how the numerical solution does not satisfy
the exact equation when tested by functions that are not discrete. Because of the fact
that

R(v;uh) =

∫
Ω

f v +

∫
ΓN

g v −
∫

Ω

∇v · ∇uh

=

∫
Ω

∇u · ∇v −
∫

Ω

∇v · ∇uh =

∫
Ω

∇(u− uh) · ∇v,

it is possible to prove that

C1‖u− uh‖1,Ω ≤ Rh ≤ C2‖∇u−∇uh‖Ω ≤ C2‖u− uh‖1,Ω.

This shows that a good way to estimate the error is to estimate Rh. Before we go on, let
us do a simple computation. It only involves integration by parts and reorganizing the
information in edges and elements:

R(v, ;uh) =
∑
K∈Th

∫
K

fv −
∑
K∈Th

∫
K

∇uh · ∇v +
∑
E∈ENh

∫
E

g v

=
∑
K∈Th

∫
K

(f + ∆uh) v −
∑
K∈Th

∑
E∈E(K)

∫
E

∂nuh v +
∑
E∈ENh

∫
E

g ∂nuh

=
∑
K∈Eh

∫
K

(f + ∆uh) v +
∑
E∈ENh

∫
E

(g − ∂nuh) v −
∑
E∈E◦h

∫
E

[[∂nuh]] v.

While we won’t work on the theory of the estimators, this formula can give a good idea
on why the next estimators look like they do.

A global estimator. With some integration by parts and Cauchy-Schwarz inequalities,
it is possible to show that

Rh ≤ Esth,

where

Est2
h :=

∑
K∈Th

h2
K

∫
K

|f |2 +
∑
E∈ENh

hE

∫
E

|g − ∂nuh|2 +
∑
E∈E◦h

hE

∫
E

[[∂nuh]]
2

=
∑
K∈Th

h2
K

∫
K

|f + ∆uh|2 +
∑
E∈ENh

hE

∫
E

|g − ∂nuh|2 +
∑
E∈E◦h

hE

∫
E

[[∂nuh]]
2.

Let us have a look at the estimator:

• The first term has to be examined in the second line (note that we are using linear
elements and, therefore, ∆uh = 0 on each element). It measures how the PDE
(f+∆u = 0) is not being satisfied inside the elements. We assume that the triangles
do not degenerate and therefore

C1h
2
K ≤ |K| ≤ C2h

2
K ,

where |K| is the area of K.

107

• The second term measures (on Neumann edges) how the Neumann condition is not
being satisfied on the edges. Here hE is the length of E.

• Finally, the third term looks at how discontinuous the gradient is across element
interfaces (interior edges).

Note that all quantities in this estimator are computable: they come from data and from
the numerical solution. It is also interesting to observe how the weight in front of each
term scales like the measure (area or length) of the set over which we are integrating.

Local estimators. We can also compute a slightly different version of the estimator,
using averages of the data functions

fK :=
1

|K|

∫
K

f, gE :=
1

hE

∫
E

gE.

On the triangle K ∈ Th we define the very easy to compute quantity

EstR(K)2 := h2
K

∫
K

|fK + ∆uh|2 +
∑

E∈E(K)∩ENh

hE

∫
E

|gE − ∂nuh|2 +
∑

E∈E(K)∩E◦h

hE

∫
E

[[∂nuh]]
2.

The new global estimator is the sum of the local estimators

Est2
R,h :=

∑
K∈Th

EstR(K)2.

This estimator is reliable up to oscillation terms, namely,

R2
h ≤ CEst2

R,h +
∑
K∈Th

OscK(f)2 +
∑
E∈ENh

OscE(g)2,

where

OscK(f) := hK‖f − fK‖K =

√
h2
K

∫
K

|f − fK |2,

OscE(g) :=
√
hE‖g − gE‖E =

√
hE

∫
E

|g − gE|2.

Local efficiency. The measure of local efficiency requires the introduction of a new set:

ωK := ∪{K ′ ∈ Th : E(K) ∩ E(K ′) 6= ∅}.

This so-called macroelement is formed by K and the (at most three) triangles that
share an edge with K. The local efficiency can be stated in the following form

EstR,h(K)2 ≤ C‖u− uh‖2
1,ωK

+
∑

K′⊂ωK

OscK′(f)2 +
∑

E∈E(K)∩ENh

OscE(g)2.

108

We finish this section noting that the oscillation terms can be considered to be of higher
order: if f and g are piecewise smooth with respect to the triangulation (which does not
imply that u is smooth), the

OscK(f) ≤ Ch2
K , OscE(g) ≤ Ch

3/2
E .

Provable adaptive techniques include oscillation terms in the error estimators. This is
just logical (not even taking into account all the above inequalities): we cannot expect to
reduce the error without having the mesh take care of details of the data functions.

2.2 Bubbles and hierarchical estimators

Edge bubble functions. Let E ∈ Eh be any edge of the triangulation. We can then
consider the continuous function bE : Ω→ R such that bE|K ∈ P2(K) for all K, bE(mE) =
1 (where mE is the midpoint of E), and bE ≡ 0 on all other edges of the triangulation.
This is one of the global basis functions of the P2 Finite Element space on the same
triangulation. It satisfies:

• The support of bE is contained in the macroelement

ωE = ∪{K ∈ Th : E ∈ E(K)}.

This macroelement is made of the two elements sharing E, unless E is on the
boundary.

• It takes values in the unit inverval:

0 ≤ bE ≤ 1.

• The edge integral of bE is of the order of the length of the edge.

ChE ≤
∫
E

bE ≤ hE.

• The gradient scales in the following form∫
ωE

|∇bE|2 ≤ C1h
−2
E

∫
ωE

|bE|2 ≤ C2.

Note also that if we take the nodal basis {ϕ1, . . . , ϕN} for Vh and we consider all edge
bubble functions not associated to Dirichlet edges {bE : E ∈ E◦h ∪ ENh }, then we have a
basis for the space of P2 finite elements on the same triangulation (see exercises). This
basis is not the nodal basis of that space, but it is a basis nonetheless. It has the advantage
of being hierachical: we start with the basis for the P1 F.E. space, and we then add
bubble functions to obtain a basis for the richer P2 space.

109

Discrete edge bubble functions. Given the triangulation Th, we can easily build a
red refinement Th/2, where every triangle has been substituted by four triangles of the
same shape (see Figure 6.1) by joining the midpoints of the edges. We then consider
the function bE : Ω → R in Vh/2 (the corresponding Finite Element space in the refined
triangulation Th/2) such that bE(mE) = 1 and bE vanishes on all other nodes (vertices) of
Th/2. Note that this new bubble function has the same four properties of the edge bubble
function (the bulletpoints above) although the support of the function is slightly reduced.

Figure 6.1: A red (uniform) refinement of two triangles and the support of the discrete
bubble function bE associated to the node added to the interior edge. The thicker line
delineates the support of bE.

Element bubbles. Let K ∈ Th and let bK be its barycenter. We can then define
bK ∈ P3(K) such that bK(bK) = 1 and bK ≡ 0 on ∂K. The following properties are
simple to show:

• The support of bK is contained in K.

• The function takes values in the unit interval:

0 ≤ bK ≤ 1.

• The area integral of bK is of the order of the area of the element

C|K| ≤
∫
K

bK ≤ |K|.

• The gradient scales in the following form:∫
K

|∇bK |2 ≤ C1h
−2
K

∫
K

|bK |2 ≤ C2.

If we consider the nodal basis {ϕi}, the P2 edge bubbles {bE : E ∈ Eh} and the element
bubbles {bK : K ∈ Th} we get a linearly independent set of functions. Its span is a proper
subset of the P3 finite element space defined on Th. Namely, if

Wh = {uh ∈ C(Ω) : uh|K ∈ P3, ∀K ∈},

then the span of all the functions above is the set

{uh ∈ Wh : uh|E ∈ P2(E) ∀E ∈ Eh}.

110

Discrete element bubbles. Let now Th/4 be the result of a double red refinement of
a triangulation Th (see Figure 6.2) and let Vh/4 be the P1 finite element space on this
triangulation. We then consider bK ∈ Vh/4 such that bK = 1 on the three interior nodes
and bK = 0 on the other nodes. This discrete bubble shares the same properties as the
P3 bubble defined above. If we now consider the set formed by the P1 basis functions in
Th, the P1 discrete bubbles bE (elements of the refined space Vh/2, and the P1 discrete
bubbles bK (elements of the doubly refined space Vh/4) we obtain a linearly independent
set spanning a proper subset of Vh/4.

Figure 6.2: Quadruple uniform refinement of a triangle. The thick line shows the boundary
of the support for the discrete bubble bK . The grey area shows where bK ≡ 1.

An edge-based estimator. Let bE be any of the two edge bubble functions defined
above. We then consider the quantity

rE := R(bE;uh) =

∫
ωE

∇(u− uh) · ∇bE

=

∫
Ω

f bE +

∫
ΓN

g bE −
∫

Ω

∇uh · ∇bE

=

∫
ωE

f bE −
∫
E

[[∂nuh]] bE if E ∈ E◦h,∫
K

f bE +

∫
E

(g − ∂nuh) bE if E ∈ ENh , E ∈ E(K).

The global estimator is

Est2
H,h :=

∑
E∈E◦h∪E

N
h

r2
E.

It is locally efficient
|rE| ≤ C‖u− uh‖1,ωE

and globally reliable up to oscillation terms, which are of higher order for smooth enough
data. Note that the local efficiency is derived from the scaling properties of the gradient
of bE.

111

Edge- and element-based estimator. Let bK be the element bubble functions (or
their discrete counterparts) defined above. We then define the local residual

rK := R(bK ;uh) =

∫
K

∇(u− uh) · ∇bK

=

∫
Ω

f bK +

∫
ΓN

bK −
∫

Ω

∇uh · ∇bK =

∫
K

f bK .

The new global estimator adds the element contributions to the edge contributions

Est2
H,h :=

∑
E∈E◦h∪E

N
h

r2
E +

∑
K∈Th

r2
K .

Its local efficiency follows from the scaling properties of the gradients of the bubble func-
tions. The reliability of this estimator follows from the reliability of the edge-based esti-
mator.

2.3 Gradient averaging

A commonly employed strategy for a posteriori error estimation arises from the construc-
tion of an improved approximation of the gradient using local averaging techniques and
then comparing the averaged gradient with the original discrete gradient as an error es-
timator. Let {vi : i = 1, . . . , N} be a numbering of all the vertices of the triangulation.
For each node vi we consider the macroelement

ωi := ∪{K ∈ Th : vi ∈ V(K)}.

We then consider the weighted average of all the gradients that we obtain at this point
(one on each element, given the fact that we expect ∇uh to be discontinuous)

gi :=
∑
K⊂ωi

|K|
|ωi|
∇uh|K ∈ R2.

Finally, we attach these nodal values to the global basis functions

Ghuh =
N∑
i=1

ϕigi : Ω→ R2, Ghuh ∈ Vh,

where
Vh := V 2

h := {vh = (vxh, v
y
h) : Ω→ R2 : vxh, v

y
h ∈ Vh}.

The a posteriori error estimator (sometimes called the Zienkiewicz-Zhu2 estimator) is the
quantity

EstZZ,h := ‖∇uh −Ghuh‖Ω.

2after Olgierd Zienckiewicz and Jian Zhong Zhu

112

Another point of view. The construction of the ‘improved’ gradient by local weighted
averaging of gradients in the elements surrounding a node can be given several possible
interpretations. Here’s one. Recall that the three-vertex formula∫

K

φ ≈ |K|
3

∑
p∈V(K)

φ(p),

which was used in mass lumping, is exact for all polynomials of degree one. We can then
define the discrete product

(v,w)h =
∑
K∈Th

|K|
3

 ∑
p∈V(K)

v(p) ·w(p)

 ,

for every pair of functions that are well defined on triangles (up to the boundary). Note
that if vh ∈ Vh and uh ∈ Vh, then

(∇uh,vh)h =

∫
Ω

∇uh · vh.

(The fact that vh is continuous does not play any role in this argument. Only the fact that
vh is linear elementwise matters.) It is quite simple to show that the averaged gradient
is the only solution to the reconstruction problem[

Ghuh ∈ Vh,

(Ghuh,vh)h = (∇uh,vh)h ∀vh ∈ Vh.

This shows that we pick the piecewise constant (and therefore discontinuous) gradient
and project it on the space Vh, using a discrete inner product (the same one we used
for mass lumping) to obtain the averaged gradient. If we had used the continuous inner
product, we would be forced to solve a global linear system and we would be losing the
localization effect.

A word on efficiency and reliability. While residual estimators have had a very well
understood theory since the very beginning, the performance of ZZ-style estimators are
based on some kind of super-approximation properties. For instance, in most theoretical
expositions of this kind of estimators, it is assumed that∫

Ω

|∇u−Ghuh|2 ≤ β

∫
Ω

|∇u−∇uh|2 with 0 < β < 1.

There are several considerations and hypotheses to be made to show that this approxi-
mation holds. Whether these hypotheses hold or not is a different story. However, there
has been much theoretical development in recent years, justifying what was observed in
practice: these estimators are actually performing their task. Note that these estimators
are extremely easy to code, which is a point in their favor. Note, at the same time, that
they completely ignore the data.

113

3 Refinement of triangular meshes

At this point we have defined several strategies to decide which elements (or which edges)
are producing the most error in our computation. Imagine that we have marked some
elements and/or some edges. The goal of the next algorithm is to find a finer triangulation
where:

• all marked elements are refined (at least by being divided into two subelements),

• all marked edges are refined (at least divided by two),

• not too many unmarked elements/edges are refined,

• the triangulation does not generate elements with too acute angles.

We note that the fact that triangulations cannot have hanging nodes forces the refinement
of triangles that might not be in the list of marked triangles. The Newest Vertex
Bisection algorithm suceeds in producing a refined triangulation with the above criteria.
The edges will be subdivided into two equally sized subedges. The key idea is to think in
terms of edges of triangles to set up a refinement condition:

If an edge of a triangle is to be subdivided, then the longest edge of that
triangle should be subdivided as well.

Let us try to see a way of deciding how to mark edges. Assume that we have a marking
strategy for triangles and edges. We first look at the triangles. If a triangle is marked,
we mark its three edges. With this rule, we have added marked edges to the possible
list of marked edges. We now go ahead and apply the rule about the longest edge3. If
there are triangles that have marked edges but their longest edges is not marked, we mark
their longest edges as well. We repeat this process untill we have a marking of edges that
satisfies the above rule.

At this stage, we go back to looking at triangles. Triangles fall into four categories:

• Those with no marked edges.

• Those with the longest edge marked.

• Those with two marked edges, one of which is the longest edge.

• Those with the three edges marked.

Even in the case where two or three edges are marked, the longest edge plays a role.
The refinement strategy is better shown with a picture. See Figure 6.3 for the possible
refinements.

3It might happen that one triangle has two equally sized longest edges. In this case, one of them is
considered to be the longest edge and the other one is ignored in this capacity.

114

Figure 6.3: The refinement strategy of the Newest Vertex Bisection method. Triangles are
refined differently depending on whether one edge (the longest one) is marked, or two edges
are marked, or all edges are marked. If only one edge is marked, its midpoint connects
to the opposed vertex. Otherwise, midpoints of the edges connect to the midpoint of the
longest edge.

4 Exercises

1. Let bE be the P2 edge bubble function associated to the edge E ∈ Th. Let {ϕi : i =
1, . . . , N} be the P1 nodal basis for the same triangulation. Show that

{ϕi : i = 1, . . . , N} ∪ {bE : E ∈ Eh}

is a basis for the P2 finite element space on Th. (Hint. Count dimensions and show
linear independence. Note that the edge bubbles vanish on all the vertices.)

2. Let Th/2 be the red refinement of a triangulation Th and let Vh and Vh/2 be the P1

finite element spaces on Th and Th/2 respectively. Let {ϕi : i = 1, . . . , N} be the
nodal basis for Th. For each edge E ∈ Eh we consider the function bE ∈ Vh/2 that
takes the unit value on the midpoint of the edge and zero on all other nodes of Eh/2.
Show that

{ϕi : i = 1, . . . , N} ∪ {bE : E ∈ Eh}

is a basis for Vh/2. (Hint. See the previous exercise.)

3. Let Nk
α = λKα be the local P1 basis functions for a triangle K. Use them to write

explicit formulas for the edge and element bubble functions.

4. Consider the simple triangulation of Figure 6.4 and assume that we have marked
one element (the one with a circle in the middle). Draw the Newest Vertex Bisection
refinement of the mesh.

115

Figure 6.4: A simple triangulation with one marked triangle.

116

Lesson 7

Polynomial bases and bookkeeping

In the first lessons we have introduced the basic finite element methods based on triangular
partitions of a polygon. In this lesson we are going to learn about how to organize the
bookkeeping for finite elements of moderately high order. We will also discuss polynomial
bases that allow for better implementation than the traditional Lagrange basis.

1 Counting degrees of freedom locally

1.1 Barycentric coordinates

The continuous reference triangle. We have seen the reference element in the plane

K̂ := {(ξ, η) : ξ, η, 1− ξ − η ≥ 0}

several times in this course. Let us now introduce the barycentric coordinates associated
to this element

λ̂1 := 1− ξ − η, λ̂2 := ξ, λ̂3 := η.

Note that these coordinates can be seen as functions of the reference variables (ξ, η). As
such, they are just the P1 basis functions in the reference element. Recall that the P1

basis functions have also been used to build the affine map from the reference element
to a general physical element. Every point of the plane can be represented with three
barycentric coordinates (λ̂1, λ̂2, λ̂3) satisfying

λ̂1 + λ̂2 + λ̂3 = 1.

Coordinate sets satisfying this kind of properties are called homogeneous coordinates.
Note that on the reference triangle, the second and the third barycentric coordinates are
the reference coordinates (ξ, η). A point (λ̂1, λ̂2, λ̂3) (with, let me repeat, λ̂1 + λ̂2 + λ̂3 = 1,
since otherwise these cannot be considered coordinates) is in the closed reference triangle

K̂ if and only if the three coordinates are non-negative. Some special points are easy to
recognize:

• The vertices are
(1, 0, 0), (0, 1, 0), (0, 0, 1).

117

• The edges of the triangle are

ê1 := {(1− t, t, 0) : 0 ≤ t ≤ 1},
ê2 := {(0, 1− t, t) : 0 ≤ t ≤ 1},
ê3 := {(t, 0, 1− t) : 0 ≤ t ≤ 1}.

With this numbering the first edge goes from the first vertex to the second, the
second edges goes from the second vertes to the third, and the third edge goes down
from (0, 1) to the origin. This nice rotation of the edges of the reference triangle is
elegantly represented by the rotation of coordinates in the above parametrizations.
If we keep 0 < t < 1, we get the edges without the endpoints.

• Once again, the entire triangle can be represented as

{(1− s− t, s, t) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1− s}.

If we make the inequalities strict, this corresponds the points in the interior of the
triangle.

Barycentric coordinates on a general triangle. Before we move on to the discrete
case, which will be our way of counting degrees of freedom, let us briefly mention the
barycentric coordinates of a triangle. Pick three unaligned points in the plane

vi =

[
xi
yi

]
i = 1, 2, 3

and order them in a way that

det

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
> 0.

Does this condition sound familiar? (It will not be relevant for what comes next, but it’s
always useful to have positive orientation.) Associated to the triangle K with the given
vertices, we can consider the functions

λKi ∈ P1(K) λKi (vj) = δij i, j = 1, 2, 3.

To avoid being too wordy, let me give you some properties here. You should be able to
prove all these statements quite easily. (Try it!)

• If FK : K̂ → K is the affine transformation mapping the vertices of K̂ to the
vertices of K in the preset order, then λKi = λ̂ ◦F−1

K . (Note that we wrote this as a
transformation of nodal bases for the P1 element when we dealt with the reference
element for the first time.)

• The sum of the barycentric coordinates of a point is one

λK1 + λK2 + λK3 = 1.

118

• The barycentric coordinates of the vertices are the canonical vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

• The barycentric coordinates of a physical point (x, y) can be found as the solution
of the system

λK1

[
x1

y1

]
+ λK2

[
x2

y2

]
+ λK3

[
x3

y3

]
=

[
x
y

]
satisfying the restriction of homogeneity

λK1 + λK2 + λK3 = 1.

Written in a different way, we solve the system x1 x2 x3

y1 y2 y3

1 1 1

 λK1
λK2
λK3

 =

 x
y
1

 .
• Points interior to K are characterized by having positive barycentric coordinates.

• Points on the boundary of K (except the vertices) are characterized by having one
vanishing barycentric coordinate while the other two are positive. Moreover, the
sets

{(1− t, t, 0) : t ∈ R}, {(0, 1− t, t) : t ∈ R}, {(t, 0, 1− t) : t ∈ R}

are the lines containing the edges of the triangle. In each case, by looking at what
coordinate vanishes we can see which vertex is not included in the line.

1.2 The principal lattice

The discrete reference element. At the time of discretizing, we can think of the
reference element as heving been reduced to the points

1
k
(i, j), i, j, k − i− j ≥ 0.

Note that all points (i
k
, j
k
) are in the reference element K̂ as long as the parameters (i, j)

satisfy the above restrictions. Instead of counting with the indices (i, j), we can count
with (k − i− j, i, j) or equivalently with

α = (α1, α2, α3), |α| = α1 + α2 + α3 = k.

Note that 1
k
α are the barycentric coordinates (with respect to the reference element) of

a point in K̂.

119

A general element. The Pk finite element is based on placing nodes on the principal
lattice of the triangle K. The points have barycentric coordinates

1
k
(α1, α2, α3), α1 + α2 + α3 = k, 0 ≤ αj ∈ Z

For instance, for k = 4 we have

1 + 2 + 3 + 4 + 5 = 15 = 1 + . . .+ k + (k + 1) =

(
k + 2

2

)
points, which can be separated as:

• the three vertices,

• 3 points (k − 1) per edge,

• and 3 points ((k − 1)(k − 2)/2 = 1 + . . .+ k − 2) inside the triangle.

A counting strategy. We are going to count the points on the principal k−lattice in
a geometric fashion.

• We first count the three vertices in rotating order

ke1 = (k, 0, 0), ke2 = (0, k, 0), ke3 = (0, 0, k).

• We then pick the points on the edges, starting in the first vertex and moving coun-
terclockwise from there:

(k − i, i, 0) i = 1, . . . , k − 1,

(0, k − i, i) i = 1, . . . , k − 1,

(i, 0, k − i) i = 1, . . . , k − 1.

(This edge count is only done for k ≥ 2, since the lowest order case involves only
the three vertices.)

• We finally choose an order for the points inside the triangle, for instance

(k − i− j, i, j) i = 1, . . . , k − 2, j = 1, . . . , k − 1− i.

Interior nodes appear only when k ≥ 3.

The total count for points is:(
k + 2

k

)
= dimPk =3 (vertices)

+ 3(k − 1) (edges)

+
(k − 2)(k − 1)

2
(interior)

120

1.3 Geometric properties of the Lagrange basis

The Lagrange basis. Let k ≥ 1 and consider the points on the principal k-lattice,
numbered as

pα, α = (α1, α2, α3), α1 + α2 + α3 = k.

(We will not make explicit the requirement of the indices to be non-negative integers.)
The nodal (Lagrange) basis associated to these points is the set of polynomials Lα ∈ Pk
such that

Lα(pβ) = δαβ =

{
1 if α = β,
0 otherwise.

Note that the count of indices equals the count of points on the lattice and, therefore, the
dimension of the space of polynomials Pk. Note also that if

p =
∑

α : |α|=k

cαLα

then p(pβ) = cβ, which implies the linear independence of these polynomials. (Proving
that the values on points of the principal lattice determine uniquely the polynomial takes
some Linear Algebra, which I’ll leave for a better occasion.)

Geometric properties. Here are some properties and/or observations:

(G.1) The only element of the basis that does not vanish at the vertex vi is Lkei . Therefore,
barring the three vertex functions Lkei , all other elements of the basis vanish on the
vertices.

(G.2) The basis functions associated to points inside an edge can be considered as edge
bubbles. They vanish on the two other edges of the element. Moreover, the k + 1
basis functions associated to an edge (the interior of the edge and the vertices) fully
determine the value of the polynomial on the edge.

(G.3) The basis functions associated to the interior of the triangle vanish on the boundary
of the triangle. (They can be considered as element bubbles.)

1.4 The Bernstein-Bézier basis

The Bernstein-Bézier basis on the element K is defined in terms of the barycentric coor-
dinates (λ1, λ2, λ3) —we omit the dependence on K— as

Bα :=

(
k

α1 α2 α3

)
λα1

1 λ
α2
2 λ

α3
3 , |α| = k

where (
k

α1 α2 α3

)
=

k!

α1!α2!α3!

121

are the trinomial coefficients. Recall that the barycentric coordinates are linear functions
of (x, y) (elements of P1), from where it is clear that Bα ∈ Pk. The expression in the
reference element is sometimes useful to see

B̂α :=

(
k

α1 α2 α3

)
(1− ξ − η)α1ξα2ηα3 , |α| = k.

Note that ∑
α : |α|=k

Bα ≡ 1.

One advantage of this basis is simple to see: the elements of this basis are always non-
negative inside the element K. This is opposed to the Lagrange basis, which is forced to
oscillate quite a lot due to its need to cancel at many points in the principal lattice. An
apparent disadvantage with respect to the Lagrange basis is the fact that the coefficients
cα in the expression ∑

α : |α|=k

cαBα

are not point values (actually, the ones corresponding to the vertices are the point val-
ues there). In other words, except for the vertex coefficients, the coefficients cα do not
provide the value of the polynomial at a nodal point; they are just coefficients of a linear
combination. This is compensated by the existence of very efficient and stable evaluation
algorithms for linear combinations of the Bernstein-Bézier polynomials. Other than that,
let us emphasize the most important fact about this basis: the geometric properties (G.1),
(G.2), and (G.3) of the Lagrange basis hold for the Bernstein-Bézier basis as well.

2 Hierarchical bases on triangles

In this section we are going to describe a third basis of polynomials on a general triangle
(it will be defined in terms of barycentric coordinates) with the geometric properties
(G.1)-(G.3) and one additional advantage: the basis will be hierarchical. This means that
the basis for Pk+1(K) will be an extension of the basis for Pk(K), including some new
polynomials. This is not true for the Lagrange and Bernstein-Bézier bases.

We will need to parametrize edges from time to time, and we will be using the interval
(−1, 1) to define some functions. To improve readability we will always take

t ∈ (0, 1) x ∈ (−1, 1).

2.1 Some univariate sequences

The Legendre polynomials. The Legendre polynomials can be defined with the fol-
lowing three-term recurrence:

L0(x) := 1,

L1(x) := x,

Lj(x) :=
2j − 1

j
xLj−1(x)− j − 1

j
Lj−2(x), j ≥ 2.

122

It is clear that the degree of Lj is exactly j and, therefore, for all k

{L0, L1, . . . , Lk} is a basis for Pk(x).

Using the recurrence, it is also simple to see that Lj(1) = 1 for all j. The Legendre poly-
nomials have also the following parity property: even-indexed polynomials are even (they
only contain even powers of x), whie odd-indexed polynomials are odd. Furthermore,
they are orthogonal in (−1, 1),∫ 1

−1

Li(x)Lj(x)dx = 0 i 6= j.

A particular instance of this property (think that L0(x) = 1) is∫ 1

−1

Lj(x)dx = 0 ∀j ≥ 1.

The Lobatto functions. We now describe a different basis for the space of univariate
polynomials. The first two polynomials are taken from the nodal (Lagrange, not Legendre)
basis in (−1, 1),

Ψ0(x) := 1
2
(1− x), Ψ1(x) := 1

2
(1 + x).

Note thus that

Ψ0(−1) = 1, Ψ0(1) = 0, Ψ1(−1) = 0, Ψ1(1) = 1.

The rest of the basis is built by integrating Legendre basis

Ψj(x) := cj

∫ x

−1

Lj−1(y)dy,

where the normalization factor cj is given by

c−2
j =

∫ 1

−1

|Lj−1(x)|2dx.

Now, let us just observe that {Ψ0,Ψ1} are a basis for P1(x), while the degree of Ψj is
exactly j for all j. This proves that for all k

{Ψ0,Ψ1, . . . ,Ψk} is a basis for Pk(x).

Some further properties of this basis are explored in the exercise list. What we care about
here is the following

Ψj(−1) = 0, Ψj(1) =

∫ 1

−1

Lj−1(x)dx = 0, j ≥ 2.

123

The kernel functions. There is a third sequence of univariate polynomials that is
derived from the previous one. Note that Ψj(±1) = 0 for all j ≥ 2 and that Ψj has degree
exactly j. We can therefore factor 1 − x2 = (1 − x)(1 + x) from all of them. We thus
define

Φk(x) :=
4

1− x2
Ψk+2(x) =

Ψk+2(x)

Ψ0(x)Ψ1(x)
∈ Pk(x).

2.2 Hierarchical bases

Some preliminary computations. Everything we are going to say from now on can be
written simultaneously in a general physical element or in the reference element. Readers
who find barycentric coordinates hard to grasp should repeat all the calculations using
the substitutions

λ̂1 = 1− ξ − η, λ̂2 = ξ, λ̂3 = η.

The differences between pairs of barycentric coordinates are linear functions characterized
by the values

v1 v2 v3

λ2 − λ1 −1 1 0
λ3 − λ2 0 −1 1
λ1 − λ3 1 0 −1

We will also consider the maps to the three edges, running in the order we have
assigned from the beginning of this Lesson:

[0, 1] 3 t 7−→ φ12(t) = (1− t)v1 + tv2,

[0, 1] 3 t 7−→ φ23(t) = (1− t)v2 + tv3,

[0, 1] 3 t 7−→ φ31(t) = (1− t)v3 + tv1.

In the particular case of the reference element, the maps are just

t 7→ (t, 0), t 7→ (1− t, t), t 7→ (0, 1− t).

If we follow parametrization after parametrization, we run along the boundary of the
element in counterclockwise orientation. Note that if, in what follows, we do all the
computations in the reference element and then push the basis forward to the physical
elements we get exactly the same basis.

The vertex functions. For any k ≥ 1, the hierarchical basis starts with the functions

λ1, λ2, λ3.

This means that the P1 basis will always be a part of the local basis, no matter the degree.

124

The edge functions. For k ≥ 2 we also include the functions

H12,j := λ2λ1Φj ◦ (λ2 − λ1), j = 0, . . . , k − 2,

H23,j := λ3λ2Φj ◦ (λ3 − λ2), j = 0, . . . , k − 2,

H31,j := λ1λ3Φj ◦ (λ1 − λ3), j = 0, . . . , k − 2.

Let us pay attention to the first edge. The factor λ2λ1 creates the edge bubble: it vanishes
on the second and third edge. Note also that

λ1 ◦ φ12(t) = 1− t, λ2 ◦ φ12(t) = t, (λ2 − λ1) ◦ φ12(t) = 2t− 1.

This is quite easy to verify noticing that λ1 ◦ φ12 : [0, 1] → R and λ2 ◦ φ12 : [0, 1] → R
are linear functions with very particular values at t = 0 and t = 1. Moreover, it’s not
complicated to show that

Ψ0(2t− 1) = 1− t, Ψ1(2t− 1) = t.

Therefore

H12,j ◦ φ12(t) = (1− t)tΦj(2t− 1)

= Ψ0(2t− 1)Ψ1(2t− 1)Φj(2t− 1)

= Ψj+2(2t− 1), j = 0, . . . , k − 2.

This means that, restricted to the first edge, the edge-counted basis functions are just
the Lobatto functions with indices j = 2, . . . , k. However, we have already observed that
the vertex-counted basis functions are just Ψ0 and Ψ1 when restricted to the edge. This
implies that the functions associated to the edge produce the Lobatto basis when restricted
to the edge. This one-dimensional basis is independent of the rest of the triangle and will
therefore allow us to glue the local basis to the next triangle. The same arguments can
be repeated for all other edges by rotating the indices (1, 2)→ (2, 3)→ (3, 1).

The element bubbles. We have, so far, 3 + 3(k − 1) functions for the basis. We
finish by adding the internal bubbles (for k ≥ 3), that will vanish on the boundary of the
element:

λ1λ2λ3

(
Φj−1 ◦ (λ2 − λ1)

)(
Φl−1 ◦ (λ1 − λ3)

)
, j, l ≥ 1, j + l ≤ k − 1.

The hierarchy. We can renumber the above basis in different ways. A key property is
the fact that the basis for Pk is a subset of the basis for Pk+1. This was not true for the
Lagrange or Bernstein-Bézier bases.

We can now renumber the basis ‘geometrically’:

Hα, |α| = k.

The elements Hkej are just the vertex functions λj. We add the edge functions by counting
along the boundary of ∂K as if we were counting the nodes for the Lagrange basis and

125

adding polynomial degrees. Similarly, we can count the interior bubbles as if they were
associated to the interior nodes of the principal lattice. It is important to emphasize
that the principal lattice is used for numbering purposes only and that this basis has
no relation to that set of points. The following properties are exact copies of the ones
satisfied by the Lagrange and BB bases:

(G.1) The only element of the basis that does not vanish at the vertex vi isHkei . Therefore,
barring the three vertex functions Hkei , all other elements of the basis vanish on the
vertices.

(G.2) The basis functions associated to points inside an edge can be considered as edge
bubbles. They vanish on the two other edges of the element. Moreover, the k + 1
basis functions associated to an edge (the interior of the edge and the vertices) fully
determine the value of the polynomial on the edge.

(G.3) The basis functions associated to the interior of the triangle vanish on the boundary
of the triangle.

2.3 Transition elements

3 Assembly

In this short section we are going to explore a way of organizing the assembly process for
high order Pk finite elements on triangulations. We have already given a local numbering
to the basis. This local way of numbering is compatible with assembling elements (gluing
elements). This is an important issue that is invisible with Lagrange bases and comes to
the foreground when we use other kind of bases. We can condense the issue in a couple
of sentences:

• only one local basis functions is non-zero at each one of the vertices;

• only k + 1 basis functions are non-zero on each one of the vertices;

• the restriction of the basis functions to an edge depends only on the edge, and not
on the shape of the triangle.

Here’s now some basic information needed from the mesh generator (part of it can be
postprocessed):

• An ordered list of the vertices vi, i = 1, . . . , Nvert.

• An ordered list of the edges ei, i = 1, . . . , Nedg. The edge information is a pair of
indices for vertices. The order of the vertices gives the intrinsic orientation of the
edge. It is convenient to assume that boundary edges are positively oriented, that
is, when we move from the first vertex to the second, we leave the domain on the
left.

126

• An ordered list of the elements Ki, i = 1, . . . , Nelt. The element information is an
ordered triple of vertex indices. We assume that for every element, the orientation
is positive.

• A cross-referenced list of edges counted by elements. This would be a list Nelt × 3
containing numbers from 1 to Nedg. The part of the list corresponding to an element
contains the global edge numbers (with the numbering given in the edge list) for
the three edges of the triangle. This list has to be given in the same order that
we decided for the basis (or, in other words, in a pre-established order given in the
reference element).

• Finally, a list of orientations for the edges counted by elements. The edges have a
local orientation (positive orientation from the point of view of the element), and
a global orientation (implicit to the edge description as the segment joining two
vertices). This table tells us if they match.

A global count of degrees of freedom for the Pk finite element can be easily achieved
by:

• counting first the Nvert vertices

• counting the all (k − 1) degrees of freedom for each edge, in order of edge, thus
counting the d.o.f.

Nvert + 1, . . . , Nvert + (k − 1)Nedg,

• counting finally the internal degrees of freedom

Nvert + (k − 1)Nedg + 1, . . . , Nvert + (k − 1)Nedg +
(k − 1)(k − 2)

2
Nelt.

If static condensation is used to eliminate the interior degrees of freedom, the last group of
indices are never used in the assembly process. We can think of a function d.o.f. acting on
vertices, edges, and elements, delivering the sets of indices associated to the corresponding
geometric element:

d.o.f.(ni) = ni,

d.o.f.(ei) = Nvert + (k − 1)(ei − 1) + [1, 2, . . . , k − 1],

d.o.f.(K) = Nvert + (k − 1)Nedg + [1, . . . , (k−1)(k−2)
2

].

From local to global. Assume that the element K is decribed by the vertices[
nK1 nK2 nK3

]
, nKi ∈ {1, . . . , Nvert}

the edges [
eK1 eK2 eK3

]
, eKi ∈ {1, . . . , Nedg},

with orientations [
sK1 sK2 sK3

]
, sKi ∈ {−1, 1}.

127

We have counted the basis locally as explained in the first section. The global d.o.f.
associated to K are given by the list

d.o.f.(nKi) = nKi , i = 1, 2, 3,

followed by

d.o.f.(eKi) if sKi = 1, or flip(d.o.f.(eKi)) if sKi = −1, i = 1, 2, 3

and finally by
d.o.f.(K).

4 Exercises

1. Consider the Lobatto functions of Section 2. Show that∫ 1

−1

Ψ′i(x)Ψ′j(x)dx = δij, i, j ≥ 2.

(This explains the normalization factor in their definitions.) Show also that∫ 1

−1

Ψ′0(x)Ψ′j(x)dx =

∫ 1

−1

Ψ′1(x)Ψ′j(x)dx = 0 j ≥ 2.

2. Show that the Lobatto functions {Ψ2, . . . ,Ψk} define a basis for {p ∈ Pk : p(±1) =
0}.

3. The Bernstein basis. The polynomials

Bi(t) :=

(
k

i

)
(1− t)k−iti, i = 0, . . . , k,

form a basis for Pk(t). Show that

Bi(0) = 0 i ≥ 1, Bi(1) = 0, i ≤ k − 1.

Show that the restriction of the Bernstein-Bézier basis to one edge (you can parametrize
it as (1− t)v + tw, where v and w are the endpoints of the edge) is the Bernstein
basis.

4. Bernstein-Bézier and hierarchical bases on the reference square. Show
that

Bi,j(ξ, η) := Bi(ξ)Bj(η) and Ψi,j(ξ, η) := Ψi(ξ)Ψj(η), 0 ≤ i, j ≤ k,

where {Bi} is the Bernstein basis (exercise 2) and {Ψi} is the Lobatto basis, are
bases for Qk. Describe, in terms of the pairs of indices (i, j) which of these functions
are associated to vertices, edges, and the interior of the element.

128

Lesson 8

Scaling arguments and FEM analysis

One of the important features of the Finite Element Method applied to elliptic problems
(extensions of the Laplace operator) is that it converges for any solution, as long as it
is in the energy (Sobolev) space. An you can actually prove that it does. No additional
regularity is needed to prove convergence of the discrete solutions to the exact solution.
FEM analysis is an interesting combination of simple results stated in an abstract language
with some carefully crafted analysis on Sobolev spaces where you really need to roll up
your sleeves to get the best results. In this lesson we are going to explore the language
of FEM analysis and build an intuition on how it proceeds. We will do this for simple
polygonal or polyhedral domains, but we will keep the equation quite general. You, the
reader, will be asked to believe that some key results hold. It takes some time to get to
understand the nitty-gritty of the details of proofs of some results in Sobolev spaces, so
we will leave this for a better occasion and try to construct here a global understanding
on how the FEM is analyzed.

(We have already met some of the forthcoming abstract ideas and arguments, and
even the names of some of the key results, in the initial lessons. We will repeat everything
again, as if we had never heard about them.)

1 Moving towards Hilbert spaces

1.1 Energy norm analysis

The domain, the problem, and the spaces. We are already quite versed in how to
move from boundary value problems to variational formulations, but let us repeat again
the main ideas, applied to a slightly more general problem than before. In a polygonal
domain Ω ⊂ R2 or a polyhedral domain Ω ⊂ R3 we consider the elliptic partial differential
equation

−∇ · (κ∇u) + c u = f in Ω.

We will allow κ to be matrix-valued. We thus assume that

κ : Ω→ Rd×d
sym,

where Rd×d
sym is the set of all symmetric d×d matrices (d = 2 or 3). The radiation coefficient

is also variable c : Ω→ R. The boundary Γ = ∂Ω is subdivided into two non-overlapping

129

parts ΓD and ΓN . We will assume that each of them is composed of full edges (resp.
faces) of the boundary of the domain. We will next impose boundary conditions on Γ:

u = 0 on ΓD, (κ∇u) · ν = g on ΓN ,

where ν is the unit outward pointing normal vector on ΓN . Taking the Dirichlet conditions
to be homogeneous is a needed simplification at this time. The case of non-homogeneous
Dirichlet conditions requires some additional ingredients that we will introduce at the end
of this lesson. The space where we look for the solution is

V = H1
ΓD

(Ω) = {u ∈ H1(Ω) : u = 0 in ΓD},

with the norm

‖u‖2
1,Ω = ‖u‖2

Ω + ‖∇u‖2
Ω =

∫
Ω

|u|2 +

∫
Ω

|∇u|2.

As mentioned in the first lessons of these notes, it is not that easy to define H1(Ω) in a
completely precise way. You can think of the space H1(Ω) as what happens when we take
limits of sequences in C1(Ω), when the limit is taken in the above norm. In other words,
a function u : Ω→ R is in H1(Ω) when there exists

(un) ⊂ C1(Ω) such that lim
n→∞

‖un − u‖1,Ω = 0.

Some easy analysis shows that it makes sense to define ∇u ∈ L2(Ω)d whenever u ∈ H1(Ω).
It is more complicated to show that it also makes sense to define u|Γ ∈ L2(Γ), when
u ∈ H1(Ω) and that

‖u‖Γ =

(∫
Γ

|u|2
)1/2

≤ C‖u‖1,Ω ∀u ∈ H1(Ω). (8.1)

The weak (or variational) form of our boundary value problem is: u ∈ V,∫
Ω

(κ∇u) · ∇v) +

∫
Ω

c u v =

∫
Ω

f v +

∫
ΓN

g v ∀v ∈ V. (8.2)

Our next goal is the study of what appears in this variational form.

A symmetric bilinear form. Consider the bilinear form:∫
Ω

(κ∇u) · ∇v.

We are next going to look at general requirements on the matrix valued function κ ensuring
well-posedness to our problem. We have already assumed that κ>(x) = κ(x) for all x,
that is, κ takes values on the space of symmetric matrices. We next assume that the
entries of the matrix-valued function κ are bounded functions. To make it simpler to
state, let us assume that there exists Cκ such that

|κ(x)ξ| ≤ Cκ|ξ| ∀ξ ∈ Rd ∀x ∈ Ω.

130

Therefore1∣∣∣∣∫
Ω

(κ∇u) · ∇v
∣∣∣∣ ≤ ‖κ∇u‖Ω‖∇v‖Ω ≤ Cκ‖∇u‖Ω‖∇v‖Ω ∀u, v ∈ H1(Ω). (8.3)

The second hypothesis on κ is more technical. We can write it as follows: there exists
cκ > 0 such that

(κ(x)ξ) · ξ ≥ cκ|ξ|2 ∀ξ ∈ Rd ∀x ∈ Ω. (8.4)

Let us first use it, and we will next discuss what it means. As a consequence of this
inequality ∫

Ω

(κ∇u) · ∇u ≥ cκ

∫
Ω

|∇u|2 = cκ‖∇u‖2
Ω ∀u ∈ H1(Ω). (8.5)

The inequality (8.4) implies that the matrix κ(x) is positive definite for all x. It goes
beyond that in requiring some sort of uniform positivity of κ(x). It can be stated equiva-
lently by saying the the smallest eigenvalue of κ(x) is larger than a fixed positive quantity
cκ.

We still have to pay attention to the reaction term in the bilinear form of (8.2). This
one is much easier: at the beginning we just assume that

|c(x)| ≤ Cc and c(x) ≥ 0 ∀x ∈ Ω.

These inequalities imply∣∣∣∣∫
Ω

c u v

∣∣∣∣ ≤ Cc‖u‖Ω‖v‖Ω ∀u, v ∈ H1(Ω) (8.6)

and ∫
Ω

c u u ≥ 0 ∀u ∈ H1(Ω). (8.7)

The energy norm. Let us now consider the following ‘norm’:

|||u|||2 =

∫
Ω

(κ∇u) · ∇u+

∫
Ω

c |u|2. (8.8)

At this point, it is easy to see that most of the axioms needed to call this function a norm
are satisfied, but that strict positivity might be missing. Combining (8.3) and (8.6) we
can show that∣∣∣∣∫

Ω

(κ∇u) · ∇v +

∫
Ω

c u v

∣∣∣∣ ≤ Cκ‖∇u‖Ω‖∇v‖Ω + Cc‖u‖Ω‖v‖Ω

≤ max{Cκ, Cc} (‖∇u‖Ω‖∇v‖Ω + ‖u‖Ω‖v‖Ω)

≤ max{Cκ, Cc}
(
‖∇u‖2

Ω + ‖u‖2
Ω

)1/2 (‖∇v‖2
Ω + ‖v‖2

Ω

)1/2

= M‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ H1(Ω).

1In this chapter we are going to be using the Cauchy-Schwarz inequality very often. The reader who
feels unsure about this should review some of the many forms we can state the CS inequality before
proceeding with the rest of this section.

131

Therefore
|||u||| ≤M1/2‖u‖1,Ω ∀u ∈ H1(Ω). (8.9)

Our next point in inquiry concerns the hypotheses under which we can write

|||u||| ≥ α1/2‖u‖1,Ω ∀u ∈ V (8.10)

(note that we are not requiring the property to hold in the entire H1(Ω) but are happy
with the space V). Another way of writing (8.10) is∫

Ω

(κ∇u) · ∇u+

∫
Ω

c |u|2 ≥ α‖u‖2
1,Ω ∀u ∈ V. (8.11)

Here are situations when this inequality holds true:

• If
c(x) ≥ c0 > 0 ∀x ∈ Ω,

then we can use (8.5) and prove that∫
Ω

(κ∇u) ·∇u+

∫
Ω

c |u|2 ≥ cκ‖∇u‖2
Ω + c0‖u‖2

Ω ≥ min{cκ, c0}‖u‖2
1,Ω ∀u ∈ H1(Ω).

(Note that we have H1(Ω) again.)

• If we just request c ≥ 0 (including the chance that c = 0 everywhere) we have∫
Ω

(κ∇u) · ∇u+

∫
Ω

c |u|2 ≥ cκ‖∇u‖2
Ω ≥ cκCΓD‖u‖2

1,Ω ∀u ∈ H1(Ω) u|ΓD = 0,

as long as ΓD is not the empty set. The inequality

‖u‖Ω ≤ C‖∇u‖Ω

is needed for the previous argument. It obviously does not hold in H1(Ω) as can
be seen by taking u ≡ 1. When ΓD = Γ (no Neumann boundary) this inequality is
called the Poincaré-Friedrichs inequality. When ΓD is non-empty it is a generaliza-
tion of the Poincaré-Friedrichs inequality that is often called the same.

• The hardest situation is when Γ = ΓN (no Dirichlet boundary) and we cannot resort
to a Poincaré-Friedrichs inequality. In this case we need to include new hypotheses
for c. The following very general hypothesis happens to be enough:

c(x) ≥ 0 ∀x ∈ Ω,

∫
Ω

c > 0. (8.12)

The reason why this is true is considerably more complicated. It uses some gen-
eral compactness arguments or ideas from something called generalized Poincaré

132

inequalities or the Deny-Lions lemma2. Let us at least have a look at a tiny part of
the argument. If |||u||| = 0, then

0 =

∫
Ω

(κ∇u) · ∇u ≥ cκ‖∇u‖2
Ω and

∫
Ω

c |u|2 = 0. (8.13)

Therefore ∇u = 0 and we can infer3 that u is constant, say u = C. The second part
of (8.13) and the second hypothesis in (8.12) then prove that u = 0. This means
that the additional hypothesis (8.12) at least gurantees that the energy norm is a
norm in V = H1(Ω). (Let me emphasize that this is not needed if there’s some
Dirichlet boundary in the geometry.)

In summary, we have given hypotheses on the coefficients (κ and c) and on the type
of boundary conditions (basically assuming the existence of Dirichlet conditions in some
cases) guaranteeing that

C1‖u‖1,Ω ≤ |||u||| ≤ C2‖u‖1,Ω ∀u ∈ V. (8.14)

The right hand side. The right hand side of (8.2) leads to some bounds. For instance,
just assuming that f ∈ L2(Ω) we can estimate∣∣∣∣∫

Ω

f v

∣∣∣∣ ≤ ‖f‖Ω‖v‖Ω ≤ ‖f‖Ω‖v‖1,Ω ∀v ∈ H1(Ω). (8.15)

The integral term arising from the Neumann boundary condition is estimated using (8.1):∣∣∣∣∫
ΓN

g v

∣∣∣∣ ≤ ‖g‖ΓN‖v‖ΓN ≤ C‖g‖ΓN‖v‖1,Ω ∀v ∈ H1(Ω). (8.16)

We are very close to being able to wrap up our problem in a wide theory. Recall that V
is our space, let us use ‖ · ‖V for the norm in V and let us consider the bilinear and linear
forms:

a(u, v) =

∫
Ω

(κ∇u) · ∇v +

∫
Ω

c u v

`(v) =

∫
Ω

f v +

∫
ΓN

g v.

With these definitions our problem can be written in a very abstract looking way:[
u ∈ V,
a(u, v) = `(v) ∀v ∈ V. (8.17)

2In their simplest versions, many well known theorems and inequalities of Sobolev space theory imply
each other, which is the reason why there’s no general agreement on how to refer to some of them. The
results might not be identical in the most general statements though.

3You would think this is easy. One of the hard parts of defining spaces by completion is being sure
that we haven’t introduced anything funny like a function that is not constant but has vanishing gradient.
Luckily we haven’t, although this is not easy to show.

133

Well-posedness. We restart the theory working on the more abstract problem (8.17).
We need V to be a Hilbert space (an inner product space where all Cauchy sequences are
convergent). We need the bilinear form a : V × V → R to be symmetric

a(u, v) = a(v, u) ∀u, v ∈ V,

and we need its associated energy norm to be well defined

|||u||| = a(u, u)1/2

and to be equivalent to the norm of V :

C1‖u‖V ≤ |||u||| ≤ C2‖u‖V ∀u ∈ V. (8.18)

We finally need the linear form ` : V → R to be bounded

|`(v)| ≤ C`‖v‖V ∀v ∈ V. (8.19)

Problem (8.17) can be understood as a representation theorem problem. We are given a
bounded functional ` on V and we look for u such that the functional a(u, ·) : V → R
equals `. The positive answer to existence and uniqueness of solution to this problem is
given by the Riesz-Fréchet representation theorem4. It says that in the given hypothesis,
problem (8.17) has a unique solution and that

|||u||| = sup
06=v∈V

`(v)

|||v|||
≤ C`
C1

.

(The last inequality follows from (8.19) and (8.18).) We can therefore bound

‖u‖V ≤
C`
C2

1

,

which is an estimate of the norm of the solution in terms of the norm of the data.

Galerkin orthogonality. The FEM is a particular instance of a Galerkin method.
In a Galerkin method applied to approximate the solution of (8.17), we choose a finite
dimensional space Vh ⊂ V (here h does not mean anything geometric; it’s just a subindex
denoting discretization) and solve[

uh ∈ Vh,
a(uh, vh) = `(vh) ∀vh ∈ Vh.

(8.20)

4Savy readers might be expecting the use of the Lax-Milgram lemma at this point (we’ll get to it
later). The Lax-Milgram lemma is only needed for non-symmetric problems, although everyone in the
FEM community resorts to it for symmetric problems and using the Riesz-Fréchet theorem is typically
seens as a crime of pedantry. You are warned! Since we are already in a footnote, let me mention the
Maurice Fréchet discovered the representation theorem independently of Frigyes Riesz, the eldest of the
Riesz brothers. The younder Riesz, Marcel, proved another very important representation theorem in
functional analysis, which has made pre-Wikipedia people confuse them quite often.

134

This problem is uniquely solvable again. Two reasons! The difficult one is because we
can use the same argument as in the continuous problem with Vh instead of V . The
easy one is because we can write (8.20) as an equivalent system of linear equations whose
associated matrix is symmetric and positive definite. We have seen the argument in the
initial lessons of this course, so we will not repeat it again. Note however that

a(uh, vh) = `(vh) = a(u, vh) ∀vh ∈ Vh,

since Vh ⊂ V and therefore

a(u− uh, vh) = 0 vh ∈ Vh. (8.21)

This property is often called Galerkin orthogonality and is plain orthogonality between
the error eh = u − uh and the space Vh, using the inner product a(·, ·) (the one whose
associated norm is the energy norm) instead of the inner product of V . The following
argument is then very simple to understand: for any vh ∈ Vh,

|||u− uh|||2 = a(u− uh, u− uh) (definition of ||| · |||)
= a(u− uh, u) (Galerkin orthogonality)

= a(u− uh, u− vh) (Galerkin orthogonality again)

≤ |||u− uh||||||u− vh|||. (Cauchy-Schwarz)

Therefore
|||u− uh||| ≤ |||u− vh||| ∀vh ∈ Vh,

or equivalently
|||u− uh||| = inf

vh∈Vh
|||u− vh|||. (8.22)

This means that the Galerkin method (the FEM in our particular example) provides the
best approximation to the solution in the energy norm. Using (8.18) we can show that

C1‖u− uu‖V ≤ |||u− uh||| ≤ |||u− vh||| ≤ C2‖u− vh‖V ∀vh ∈ Vh,

that is,

‖u− uh‖V ≤
C2

C1

inf
vh∈Vh

‖u− vh‖V . (8.23)

This inequality (often called Céa’s lemma or estimate) says that, up to a multiplicative
constant depending only on the bilinear form, the Galerkin solution provides the best
approximation in the norm of V . For this reason, the estimate (8.23) is often called
quasioptimality of the Galerkin method.

1.2 General non-symmetric problems

Lax-Milgram and Céa. Symmetry of the bilinear form is not needed for the FEM
to work. Non-symmetric bilinear forms appear in boundary value problems for non-self-
adjoint partial differential equations. Here’s a convection-reaction-diffusion equation

−∇ · (κ∇u) + b · ∇u+ c u = f in Ω.

135

The bilinear form that appears in the variational formulation (actually, in one possible
variational formulation) is

a(u, v) =

∫
Ω

(κ∇u) · ∇v +

∫
Ω

(b · ∇u) v +

∫
Ω

c u v. (8.24)

If b : Ω→ Rd is bounded, then∣∣∣∣∫
Ω

(b · ∇u) v

∣∣∣∣ ≤ Cb‖∇u‖Ω‖v‖Ω ∀u, v ∈ H1(Ω).

Therefore, with the previous hypotheses for κ and c (they have to be bounded), we have
continuity a.k.a. boundedness of the bilinear form

|a(u, v)| ≤M‖u‖V ‖v‖V ∀u, v ∈ V. (8.25)

The other property that is needed is coercivity of the bilinear form

a(u, u) ≥ α‖u‖2
V ∀u ∈ V. (8.26)

There are different sets of hypotheses that make bilinear form (8.24) coercive in H1(Ω)
or in the subspace where the Dirichlet boundary conditions hold. For instance, with any
of the possibilities for κ and c given above, the hypotheses

∇ · b = 0 in Ω, b · ν = 0 on ΓN

are sufficient conditions for coercivity of (8.24). These hypotheses can be relaxed to
hypotheses involving all coefficients of the equation simultaneously5. Assuming that V
is a Hilbert space, that a : V × V → R is a bilinear form that is bounded (8.25) and
coercive (8.26) the Lax-Milgram lemma6 proves that for every bounded linear functional
` : V → R

|`(v)| ≤ C`‖v‖V ∀v ∈ V,

the problem [
u ∈ V,
a(u, v) = `(v) ∀v ∈ V, (8.27)

has a unique solution. It is then clear from the inequalities

α‖u‖2
V ≤ a(u, u) = `(u) ≤ C`‖u‖V

that

‖u‖V ≤
C`
α
,

5And this is not even the whole story. Some convection-diffusion problems are not coercive but they
can still be treated with the FEM. The reasons behind are, however, much more complicated and we
won’t deal with them here.

6Peter Lax is one of the most renown numerical analysts (and many other things) of the past century.
In the numerical analysis and PDE community Arthur Milgram seems to have been relegated to be the
conamer of this ‘famous’ lemma.

136

which shows that the norm of the solution is bounded by the ‘norm’ of the data. For a
Galerkin discretization of (8.27)[

uh ∈ Vh,
a(uh, vh) = `(vh) ∀vh ∈ Vh,

the Lax-Milgram lemma applied in the space Vh ensures existence and uniqueness of
solution, while the following argument

α‖u− uh‖2
V ≤ a(u− uh, u− uh) (coercivity)

= a(u− uh, u− vh) (Galerkin orthogonality; vh ∈ Vh)
≤M‖u− uh‖V ‖u− vh‖V (boundedness)

shows that

‖u− uh‖V ≤
M

α
inf
vh∈Vh

‖u− vh‖V

(Céa’s lemma or quasioptimality) provides a bound of the error for the Galerkin methods
in terms of the best approximation of the solution in the discrete space Vh. Before we go
on, let me emphasize two points:

• When the bilinear form is not symmetric, you don’t think in terms of the energy
norm any longer. The reason is that a(·, ·) does not define an inner product, so it
is incorrect to think that the associated quadratic form a(u, u) is going to define a
norm.

• Céa’s lemma moves the problem of analyzing the error of Galerkin methods (the
Finite Element Method!) to a problem of approximation theory. How small is the
quantity

inf
vh∈Vh

‖u− vh‖V = min
vh∈Vh

‖u− vh‖V

and how does this quantity depend on properties of u that we can know in advance?
While approximation theory will let us bound the right-hand side of the Céa esti-
mate, this will be done based on assumptions on the smoothness of the (unknown)
exact solution u. Figuring out how smooth the solution of the PDE is, depending
on how smooth the data and the coefficients are (and on geometric properties of the
domain Ω) is the realm of regularity theory, which is way more advanced than what
we want to deal with at this stage.

2 Scaling of Sobolev norms

2.1 The big picture

In this section we abandon the neat world of linear functional analysis in Hilbert spaces
to plunge in some soft-core mathematical analysis. Let me give you a preview before we

137

get into details. Let us assume that the solution u to weak PDE (8.27) is smooth enough
so that it is continuous7. Let now

Wh = {uh ∈ C(Ω) : uh ∈ Pk ∀K ∈ Th},

where Th is a triangulation (or tetrahedrization) of Ω. We can then define Πhu ∈ Wh

to be the interpolant of u in the nodes of the triangulation: vertices of P1, vertices and
midpoints of edges for P2, etc for higher order. Recall that if u = 0 on ΓD, then Πhu = 0
on ΓD and therefore Πhu ∈ Vh. We then use Céa’s estimate and bound

‖u− uh‖1,Ω ≤
M

α
inf
vh∈Vh

‖u− vh‖1,Ω ≤
M

α
‖u− Πhu‖1,Ω.

We have suddenly reduced the problem to a problem of analyzing the error for interpola-
tion by piecewise polynomial functions. However, one of the beauties of interpolation by
Finite Elements (by piecewise polynomials) is the fact that it is a local operator: if we
consider the local interpolant ΠKu ∈ Pk(K), then Πhu|K = ΠKu. Why is this important?
Because we just need to study interpolation by polynomials on triangles or tetrahedra,
which looks like a so much simpler task. The full error will be bounded by adding the
local errors since

‖u− Πhu‖2
1,Ω =

∫
Ω

|∇u−∇Πhu|2 +

∫
Ω

|u− Πhu|2

=
∑
K∈Th

(∫
K

|∇u−∇Πhu|2 +

∫
K

|u− Πhu|2
)

=
∑
K∈Th

‖u− ΠKu‖2
1,K .

(Pay attention to how surreptitiously I’ve susbtituted Πhu by ΠKu on each triangle.)
We’ll go even further. Recall that for each element K we had an affine map from the
reference element K̂

FK : K̂ → K. (8.28)

Let us use Π̂ to denote the nodal Pk interpolation operator in the reference element. If
we denote

û = u ◦ FK : K̂ → R (8.29)

(this is u being pulled back to the reference element) then

Π̂û = Π̂Ku,

or, with more detail,
Π̂(u ◦ FK) = (ΠKu) ◦ FK .

With words: interpolating u and bringing it back to the reference element is the same as
pulling u back to K̂ and interpolating there. I won’t give a formal proof of this, although

7You might be surprised about this assumption, given the fact that we are dealing with a PDE. The
issue with weak formulations is that the functions are only observed under integral sign and Sobolev
spaces might contain functions that are not continuous. We’ll talk about this later on.

138

the property is quite simple to understand. The space of polynomials is invariant by
invertible affine maps and the interpolation points are always taken by fixing barycentric
coordinates, which are invariant by affine transformations8. The main advantage of the
equality (8.29) is that our problem is reduced to:

• Understanding how the interpolation operator behaves in the reference element (as
opposed to in every possible physical element).

• Studying how Sobolev norms are modified when we apply linear transformations.

The second of these questions is solved using what people in the FEM community call
scaling arguments (you’ll see why, wait for it). The first question will take us back to
a more abstract world, by using a simple very clean cut theorem.

2.2 Some geometric ideas

Understanding scaling. The transformation from the reference element to the physi-
cal element K is

FK(x) = BKx + b,

where BK is an invertible d× d matrix. This matrix can be factorized using its Singular
Value Decomposition

BK = PΣQ>, P>P = I, Q>Q = I,

where

Σ =

[
σK1 0
0 σK2

]
or Σ =

 σK1 0 0
0 σK2 0
0 0 σK3

 , σKi > 0,

depending on whether we are working in two or three dimensions. For readers who
are not much acquainted with the SVD, just believe that this factorization exists and
continue with the argument. A key assumption is the following: there exist two constants
C1, C2 > 0 such that

C1hK ≤ σKi ≤ C2hK ∀i ∀K ∈ Th. (8.30)

Here hK is a quantity that measures the size of K. Typically hK is taken to be the
diameter of K. that is, the diameter of the smallest ball that contains K. We can also
make the arguments work with hK equal to the length of the longest edge of K. The
first magnitude is preferred in expositions of FEM theory because it is easier to extend
to the cases of paralellograms/parallelepipeds9. The bound (8.30) can be understood as
putting some limits to how deformed (how flat or elongated) the element K is allowed to
be. Note that the upper bound in (8.30) is not really an assumption, since it follows from
geometric arguments about the SVD and the definition of hK . I’ve always found it very
useful to keep a very simple example in mind:

BK = hKP, P>P = I, (8.31)

8Let me clarify that this interpolation operator is used for analysis of approximation error. It doesn’t
really matter what basis we used in our FEM implementation. This is all about interpolation error.

9The analysis for the Qk FEM is surprisingly similar and it can be carried out simultaneously.

139

which says that K is the result of rotating (and/or symmetrizing) K̂ and then rescaling
it. This hK here is not exactly the same as before, but it is equivalent.

Some context. Different FE textbooks provide different ways of presenting the scaling
arguments. The most popular one, which has been around since the early books on FEM,
is the use of the diameter hK and the inradius ρK (the radius of the largest ball that we
can fit in K). The typical hypothesis (substituting (8.30)) is shape-regularity

hK
ρK
≤ C ∀K ∈ Th. (8.32)

Other expositions use hK and a parameter called chunkiness, measuring the deformation
of the elements. And one more issue before we go on. In order not to overload notation
(which can become overwhelming quite easily) the theory is done for all elements of any
triangulation of any polygonal/polyhedral domain, as long as this triangulation satisfies
the shape-regularity bounds. The idea of dealing with every triangulation and every do-
main is frequently left unmentioned. Think that the analysis is done on any physical
element K, so it doesn’t matter that K is part of a triangulation; it just floats in space,
nicely ignoring all other elements. You can then get your mindset to thinking of any tri-
angle/tetrahedron as long as its not too deformed following (8.30) or whatever equivalent
hypothesis you prefer to handle.

Some notation. Once we start with the bounds we will get many constants like the
ones in the hypothesis (8.30). In order to avoid having to keep track of them, we will
often write

aK . bK

when there exists a constant C, independent of K, such that

aK ≤ CbK .

This constant will typically depend on:

• the deformation parameters (8.30) or (8.32),

• the polynomial degree k (which will reappear shortly).

Keeping track of constants depending on deformation is very important for analysis of
FEM on very anisotropic meshes (but then the scaling arguments have to be redone from
scratch). Keeping track of the polynomial degree10 is important for analysis of the p-
FEM, that is, the FEM when the polynomial degree is increased instead of the mesh
being refined (this is called h-method). Finally

aK ≈ bK means aK . bK . aK .

10The polynomial degree will be part of what we will call finite-dimensional-arguments, that will be
coupled with scaling arguments in the final stages of the analysis.

140

Some inequalities. The hypothesis (8.30) on the singular values of BK = DFK (once
more, think of Σ = hKI to make your life simpler) implies all the following:

| det BK | =
|K|
|K̂|

=
∏
i

σKi ≈ hdK . (8.33)

(Note how we have written two inequalities and hidden the constants with the symbol
≈.) We also have

|B>Kξ| ≈ hK |ξ| ∀ξ ∈ Rd

or equivalently
|B−>K ξ| ≈ h−1

K |ξ| ∀ξ ∈ Rd. (8.34)

(Note now how this is an equality when σKi = hK for all i. In that case the orthogonal
matrices P and Q do not change the size of the vector.)

2.3 Scaling inequalities

The L2 norm. Using (8.33) and recalling the notation û = u ◦ FK it is clear that∫
K

|u|2 = | det BK |
∫
K̂

|u ◦ FK |2 ≈ hdK

∫
K̂

|û|2,

or, in short-hand
‖u‖K ≈ h

d/2
K ‖û‖K̂ . (8.35)

The gradient seminorm. We have seen the following computation at the time when
we moved to the reference element for evaluation of the stiffness matrix:

(∇u) ◦ FK = B−>K ∇(u ◦ FK).

Therefore, using (8.34) and (8.33) we can estimate∫
K

|∇u|2 = | det BK |
∫
K̂

|(∇u) ◦ FK |2

= | det BK |
∫
K̂

|B−>K ∇(u ◦ FK)|2

≈ | det BK |h−2
K

∫
K̂

|∇(u ◦ FK)|2,

that is,

hK‖∇u‖K ≈ | det BK |1/2‖∇û‖K̂ ≈ h
d
2
K‖∇û‖K̂ . (8.36)

If you put (8.35) and (8.36) together, you will see that the scaling for these two terms is
different:

‖u‖2
1,K = ‖u‖2

K + ‖∇u‖2
K ≈ h

d/2
K (‖û‖2

K̂
+ h−2

K ‖∇û‖
2
K̂

).

The lesson to learn in this double inequality is that the Sobolev H1 norm doesn’t scale
well (it is not a scalable norm) but the L2 norm and the H1 seminorm do.

141

The higher order seminorms. The Sobolev seminorm of order m on the element K
can be defined as

|u|2m,K =
∑
|α|=m

∫
K

|∂αu|2,

where

∂αu =
∂|α|u

∂xα1
1 ∂x

α2
2

, α = (α1, α2), |α| = α1 + α2

or (when we are in three dimensions)

∂αu =
∂|α|u

∂xα1
1 ∂x

α2
2 ∂x

α3
3

α = (α1, α2, α3), |α| = α1 + α2 + α3.

The scaling for the Sobolev seminorm is

hmK |u|m,K ≈ h
d/2
K |û|m,K̂ . (8.37)

Note that (8.35) and (8.36) are particular cases with m = 0 and m = 1, respectively. We
are not going to prove this inequality here, but I will give a couple of ideas:

• When FK(x) = hKx + b, the inequality is almost straightforward to prove. In this
case the derivatives do not get mixed and each partial derivative of u corresponds
to a partial derivative of û. The same thing happens with BK is a diagonal matrix.

• The general case can be proved by induction. If we take v = ∂αu with |α| = m− 1
and apply (8.36), we can prove the general case, by being extremely careful with
changes of variables.

3 Convergence estimates

3.1 Interpolation error

The Bramble-Hilbert lemma. The study of interpolation on the reference element
is done using a quite general argument that we will only present here in the particular
case we are interested in. Let us consider the interpolation operator in the reference
element: given a continuous function v : K̂ → R, we denote by Π̂v the unique element of
Pk = Pk(K̂) that interpolates v on the principal k-lattice points, that is,

Π̂v(p̂β) = v(p̂β) ∀β, |β| ≤ k

where
p̂(i,j) = 1

k
(i, j) or p̂(i1,i2,i3) = 1

k
(i1, i2, i3).

Then, there exists C that depends only on the polynomial degree k such that

‖v − Π̂v‖1,K̂ ≤ C|v|k+1,K̂ ∀v ∈ Hk+1(K̂). (8.38)

142

We will refer to this result as the Bramble-Hilbert lemma 11, although the Bramble-Hilbert
lemma is more general, dealing with other ‘interpolation’ operators, reference elements,
etc. In different communities, this result receives different names. It is common to refer
to this kind of result as the Deny-Lions lemma. In any case, this result can be proved to
be a consequence of a much more general theorem in Sobolev space theory, the Rellich-
Kondrachov compactess theorem. Even without a proof (it requires too much handling of
Sobolev spaces for what we are using in these notes), the reader can note how the result
writes the error of interpolating with polynomials of degree k in terms of the derivatives
of order k + 1, which is exactly what one would expect.

Interpolation of the physical element. As we have already mentioned,

Π̂Ku = Π̂û (8.39)

(interpolation and pullback to the reference element can be interchanged), and therefore

h2
K‖u− ΠKu‖2

1,K . ‖u− ΠKu‖2
K + h2

K‖∇u−∇ΠKu‖2
K

. hdK‖ ̂u− ΠKu‖2
K̂

+ hdK‖∇(̂u− ΠKu)‖2
K̂

(scaling)

= hdK‖û− Π̂û‖2
1,K̂

(by (8.39))

. hdK |û|2k+1,K̂
(Bramble-Hilbert)

. h
2(k+1)
K |u|2k+1,K , (scaling)

that is,
‖u− ΠKu‖1,K . hkK |u|k+1,K .

Global interpolation estimate. Assume, for a moment, that boundary conditions do
not play any role. We start with a smooth enough function u : Ω → R and apply the
interpolation operator ΠK on each of the elements K ∈ Th. The resulting function, Πhu
is continuous and piecewise polynomial of degree k. Note now that the value of ΠK on
a face/edge depends only on the values of u on that face/edge. Therefore, if u = 0 on
ΓD, then Πhu = 0 on ΓD. Finally, we aggregate the local interpolation estimates on the
elements. Denoting

h := max
K∈Th

hK , (8.40)

we can bound

‖u− Πhu‖2
1,Ω =

∑
K∈Th

‖u− ΠKu‖2
1,K

.
∑
K∈Th

h2k
K |u|2k+1,K

≤ h2k
∑
K∈Th

|u|2k+1,K ,

11This Hilbert is not the famous David Hilbert, father of Hilbert spaces. This lemma is well-known in
the Finite Element community and was proved by James Bramble and Stephen Hilbert.

143

and therefore
‖u− Πhu‖1,Ω . hk|u|k+1,Ω ∀u ∈ Hk+1(Ω). (8.41)

This is the typical estimate that you learn in basic Finite Element theory. Note that we
have overestimated all the element sizes by the maximum of all of them (hK ≤ h), but
that we could think of keeping each element size with the contribution of K to the global
Hk+1 seminorm. The result is less neat, but it allows us to take bigger values of hK in
elements where the Hk+1(K) seminorm is small.

3.2 Finite Element estimates

Estimate using full regularity. We are ready to obtain an estimate for the finite
element solution of an elliptic linear PDE of the second order. Céa’s lemma gives

‖u− uh‖1,Ω . inf
vh∈Vh

‖u− vh‖1,Ω.

The constants hidden in the symbol . are related to the coefficients of the equation and,
in some case, to the geometric configuration of the boundary, namely, to how large the
Dirichlet boundary ΓD is in comparison to the full boundary. However, the interpolant
Πhu is only well defined when u is continuous, which is not a requirement for a gen-
eral solution of the problem. Let us further assume that u ∈ Hk+1(Ω). Then, we can
concatenate two inequalities:

inf
vh∈Vh

‖u− vh‖1,Ω ≤ ‖u− Πhu‖1,Ω . hk|u|k+1,Ω.

The last inequality hides many more constants: we have used scaling inequalities galore
(hiding constants related to shape-regularity) and the Bramble-Hilbert lemma (hiding a
constant depending on the polynomial degree). In any case, we have shown that the Pk
FEM has order k for smooth enough solutions.

Estimate using reduced regularity. There are several ways of approaching the anal-
ysis of FEM when the solution is not in Hk+1(Ω). We can redo the local interpolation
estimates (that requires a modification of the statement of the Bramble-Hilbert lemma),
or we can proceed as follows. Let V `

h be the FE space of degree ` on the same triangulation,
with 1 ≤ ` < k. Then

‖u− uh‖1,Ω . inf
vh∈V kh

‖u− vh‖1,Ω ≤ inf
vh∈V `h

‖u− vh‖1,Ω

since V k
h ⊂ V `

h . Using the estimate for the interpolation operator on V `
h , it follows that

‖u− uh‖1,Ω . h`K |u|`+1,Ω if u ∈ H`+1(Ω), 1 ≤ ` ≤ k.

This proves convergence for solutions that are, in the worst case, in H2(Ω). Note that
for solutions u ∈ H2(Ω), this results predicts convergence of order one, no matter what
the polynomial degree is. This would seem to indicate that there’s no point in using
high order FEM except for cases when we are confident that the solution is very smooth.

144

The situation is actually much more complicated. First of all, we have used many upper
bounds that might be overestimating the error in significant ways. For instance, in areas
where the solution is very smooth, the high order interpolation operator will definitely
give better results, even if we cannot claim convergence of high order in the sense of
having a higher power of h. Even in the worst case, we have

inf
vh∈V kh

‖u− vh‖1,Ω ≤ inf
vh∈V `h

‖u− vh‖1,Ω,

which clearly hints at the fact that the higher order methods will give a better solution.
This can be proved if we work in the energy norm for symmetric problems, since in that
case

|||u− ukh||| = inf
vh∈V kh

|||u− vh||| ≤ inf
vh∈V `h

|||u− vh||| = |||u− u`h||| ` ≤ k,

where umh is the Pm Finite Element solution.

General convergence theorem. One of the great properties of the FEM is conver-
gence of the method as h → 0 (meshes are refined) no matter the regularity. The result
follows from a density argument. It says something like the following: the space H2(Ω)
is dense in H1(Ω) (which means that every function in H1(Ω) can be approximated to
arbitrary precision by functions on H2(Ω)) and the FEM converges in H1(Ω) for H2(Ω)
solutions; therefore the FEM converges for any solution in H1(Ω).

3.3 The Aubin-Nitsche trick

A neat trick. The Aubin-Nitsche trick was named after two mathematicians12 that
found this idea (sometimes referred to as a lemma) independently. It is also called an
estimate by duality. It is a very elegant example of a global superconvergence result. It
needs an additional regularity hypothesis that we will next discuss.

The adjoint problem. To make this as general as possible let us consider a non-
symemtric PDE

−∇ · (κ∇u) + b · ∇u+ c u = f in Ω,

with boundary conditions

u = 0 on ΓD, (κ∇u) · ν = g on ΓN .

The variational formulation of this problem involves the space

V = {u ∈ H1(Ω) : u = 0 on ΓD},

the bilinear form

a(u, v) =

∫
Ω

(κ∇u) · ∇v +

∫
Ω

(b · ∇u)v +

∫
Ω

c u v

12One in France, Jean-Pierre Aubin, and one in Germany, Joachim Nitsche

145

and the linear form

`(v) =

∫
Ω

f v +

∫
ΓN

g v.

The adjoint problem is the problem that arises from the variational formulation that uses
the transposed bilinear form. We are going to feed this problem with a simple linear form
in the right-hand side ˜̀(v) =

∫
Ω

θ v θ ∈ L2(Ω),

and then look for the solution of[
w ∈ V,
a(v, w) = ˜̀(v) ∀v ∈ V.

You have to do some integration by parts to recognize that this problem is the variational
formulation of the following PDE:

−∇ · (κ∇w)−∇ · (wb) + cw = θ on Ω (8.42)

with boundary conditions

w = 0 on ΓD, (κ∇w) · ν + (b · ν)w = 0 on ΓN . (8.43)

(This is not very difficult to check and you are suggested to try this as an exercise.) The
Aubin-Nitsche trick requires the following hypothesis to hold: for every θ, the solution
of (8.42) with boundary conditions (8.43) is in the space H2(Ω) and can be bounded as
follows

‖w‖2,Ω ≤ C‖θ‖Ω. (8.44)

It is not simple to find general conditions for this property (often called H2(Ω)-regularity
of the adjoint problem) to hold. A particular case where (8.44) holds:

• The diffusion coefficients κ and the reaction coefficient c are smooth functions and
there is no convection coefficient b ≡ 0.

• The domain Ω is a convex polygon/polyhedron.

Superconvergence. Here is the trick. We solve the adjoint problem (8.42)-(8.43) with
θ = u− uh. Let w be the adjoint solution[

w ∈ V,
a(v, w) = (θ, v)Ω ∀v ∈ V,

and let wh be its associated Finite Element approximation[
wh ∈ Vh,
a(vh, wh) = (u− uh, vh)Ω ∀vh ∈ Vh.

146

Then

‖u− uh‖2
Ω = (u− uh, u− uh)Ω

= a(u− uh, w) (def of w)

= a(u− uh, w − wh) (Galerkin orthogonality for u− uh)
≤M‖u− uh‖1,Ω‖w − wh‖1,Ω (boundedness)

. ‖u− uh‖1,Ωh|w|2,Ω (estimate for H2(Ω) solution)

. h‖u− uh‖1,Ω‖u− uh‖Ω. (H2(Ω)-regularity)

We have used the convergence estimate for the FEM applied to the adjoint problem (if the
original problem is coercive, so is the adjoint; why?) and the H2(Ω) regularity hypothesis
(8.44) on the adjoint problem. We have thus proved that

‖u− uh‖Ω . h‖u− uh‖1,Ω,

which means that, given the additional regularity hypothesis on the adjoint problem, the
FEM converges with an additional order in the L2(Ω) norm.

3.4 Dirichlet boundary conditions

The problem. In this section we will explore, just for a moment, what to do with
Dirichlet boundary conditions. Let us thus consider our original problem now with non-
zero Dirichlet boundary conditions:

−∇ · (κ∇u) + c u = f in Ω,

u = g0 on ΓD,

(κ∇u) · ν = g on ΓN .

In the variational formulation we use the same notation as before, so there’s no need to
reintroduce the spaces, linear and bilinear form:

u ∈ H1(Ω),

u|ΓD = g0,

a(u, v) = `(v) ∀v ∈ V.

Note that the space H1(Ω) appears as a bigger space than V . To make notation a bit
more general, let us write W = H1(Ω) and keep V for the space where the boundary
conditions are imposed13. How do you deal with this problem? It’s actually quite easy:
take any unh ∈ W such that unh = g0 on ΓD and define u0 = u − unh, which obviously
satisfies [

u0 ∈ V,

a(u0, v) = `(v)− a(unh, v) ∀v ∈ V.
(8.45)

We can now see that the hypotheses for the Lax-Milgram lemma have to be modified (just
a little) to deal with this problem, which as a more complicated right-hand-side:

13Typically this is done in the reverse order: V is the full space and V0 is the subspace with zero
boundary conditions. There’s no point on changing notation now for just on small section though.

147

• We are fine with coercivity in V .

• Boundedness of ` in V is still enough.

• Boundedness of a(·, ·) has to be extended to the full space

|a(u, v)| ≤M‖u‖V ‖v‖V ∀u, v ∈ W.

(Actually we can leave v ∈ V .) This is needed for the new linear map

ξ(v) = `(v)− a(unh, v)

to still be bounded:
|ξ(v)| ≤ C`‖v‖V +M‖unh‖V ‖v‖V .

These hypotheses imply that the reduced problem (8.45) has a unique solution. Note that
we recover the original solution by adding back unh and

‖u‖V ≤ ‖u0‖V + ‖unh‖V

≤ Cξ
α

+ ‖unh‖V (Lax-Milgram)

≤ 1

α
(C` +M‖unh‖V) + ‖unh‖V (Bound for Cξ)

≤ C`
α

+

(
1 +

M

α

)
‖unh‖V .

The bound can be refined by noticing that u is unique even if we choose different unh as
a lifting of the Dirichlet boundary condition:

‖u‖V ≤
C`
α

+

(
1 +

M

α

)
inf{‖unh‖V : unh ∈ W,unh = g0 on ΓD}. (8.46)

A fractional Sobolev norm. Let us recall the inequality (8.1)

‖u‖Γ ≤ C‖u‖1,Ω ∀u ∈ H1(Ω),

which gives an extension of the idea of restriction to the boundary for a function in H1(Ω).
In the set14

H1/2(Γ) := {g ∈ L2(Γ) : g = u|Γ for some u ∈ H1(Ω)},

we can define the so called image norm

‖g‖1/2,Γ = inf{‖u‖1,Ω : u ∈ H1(Ω), u = g on Γ}.

This norm makes the space H1/2(Γ) a Hilbert space. Note that this is the expression that
we get in the right-hand side of (8.46).

14There’s no simple reason why we should call this set H1/2(Γ) apart from a vague notion that it can
be proved to be in the ‘middle’ of H0(Γ) = L2(Γ) and the space H1(Γ).

148

The discrete case. In the initial lessons of this course we have always imposed the
non-homogeneous Dirichlet conditions by imposing the value of uh to match the value of
the Dirichlet data on the Dirichlet nodes. This was easy to do because we were thinking
of the Lagrange basis, where coefficients are nodal values. The process is less clear when
we use other types of bases for the FEM. As usual Wh is the full Finite Element space
and Vh ⊂ V is the space with zero Dirichlet boundary conditions. No matter what we do,
we can think that there is a boundary space

Φh := {uh|ΓD : uh ∈ Wh}.

This space can be understood as a space of Pk finite elements on the triangulation of
ΓD that is inherited from Th. We then choose g0,h ∈ Φh, for instance, by interpolating
g : ΓD → R on all Dirichlet nodes and write the FEM approximation to our problem:

uh ∈ Wh,

uh|ΓD = g0,h,

a(uh, vh) = `(vh) ∀vh ∈ Vh.

The error analysis is very similar to the one for the continuous case. We choose any

unh,h ∈ Wh such that unh,h|ΓD = g0,h

and think in terms of the function u0,h = uh − unh,h ∈ Vh. Then

α‖uh − unh,h‖2
V ≤ a(uh − unh,h, uh − unh,h) (coercivity in Vh ⊂ V)

= a(u− unh,h, uh − unh,h) (Galerkin orthogonality)

≤M‖u− unh,h‖V ‖uh − unh,h‖V (boundedness),

which implies that

‖u− uh‖V ≤ ‖u− unh,h‖V + ‖unh,h − uh‖V ≤
(

1 +
M

α

)
‖u− unh,h‖V .

Since the discrete lifting unh,h of the boundary condition g0,h is arbitrary, we have proved
that

‖u− uh‖1,Ω ≤
(

1 +
M

α

)
inf{‖u− wh‖1,Ω : wh ∈ Wh, wh|ΓD = g0,h}, (8.47)

which is the traditional version of Céa’s lemma for non-homogeneous boundary conditions.

Error bounds. If we assume that u ∈ Hk+1(Ω) and g0,h has been built by interpolation,
that is, matching uh and g0 on all Dirichlet nodes, then we can bound

‖u− uh‖1,Ω ≤
(

1 +
M

α

)
‖u− Πhu‖1,Ω . hk|u|k+1,Ω.

149

If we have reduced regularity the argument that we used for the homogeneous problem
does not work. However, the statement we gave for the Bramble-Hilbert lemma can be
modified to say now that

‖v − Π̂v‖1,K̂ ≤ C|v|`+1,K̂ 1 ≤ ` ≤ k ∀v ∈ H`+1(K̂).

With this intermediate result, we can go ahead and proof convergence for solutions u ∈
H2(Ω).

A final word. The correct imposition of Dirichlet boundary conditions and its analysis
is a complicated issue, especially when the Dirichlet data and/or the solution are not very
smooth functions. The way to proceed is to show an enhanced version of Céa’s estimate
(8.47)

‖u− uh‖1,Ω . inf
wh∈Wh

‖u− wh‖1,Ω + ‖g0 − g0,h‖1/2,ΓD ,

which separates the effects of approximation of the solution in the Finite Element space
from the initial approximation of the Dirichlet data. The proof of this result is not triv-
ial though, requiring the introduction of some ‘interpolation’ operator for non-smooth
functions, due to Ridgway Scott and Shangyou Zhang. It also requires handling approxi-
mation properties in fractional Sobolev norms on the boundary. We will keep away from
these complications and move on to other problems.

4 Exercises

1. Show a scaling inequality for the rescaled Sobolev norm

‖u‖1,K,h :=
√
‖u‖2

K + h2
K‖∇u‖2

K .

2. Prove the scaling inequality (8.37) for the case when

BK =

 σK1
σK2

σK3

 σKi ≈ hK .

3. If Πh is the interpolation operator by continuous piecewise polynomials of degree k,
show that

‖u− Πhu‖Ω . hk+1|u|k+1,Ω.

4. Find the variational formulation of the problem −∇ · (κ∇w + wb) + cw = θ in Ω,
w = 0 on ΓD,
(κ∇w + wb) · ν = 0 on ΓN .

150

5. Assume that we can count on the following inequality

‖v − Π̂v‖1,K̂ ≤ C|v|`+1,K̂ 1 ≤ ` ≤ k ∀v ∈ H`+1(K̂)

for the Pk interpolation operator on the reference element. Repeat the scaling
inequalities to show that

‖u− Πhu‖1,Ω . h`|u|`+1,Ω, 1 ≤ ` ≤ k.

151

Lesson 9

An introduction to Raviart-Thomas
elements

Mixed finite elements form a class of their own, although their name is slightly misleading,
because they include problems with very different features, sharing a common structure.
In this lesson we are going to explore the basic finite element discretizations for a mixed
formulation of an elliptic equation. This formulation falls into a general category
of saddle point problems. You might wonder why we should even try to formulate
the problem in a different way and then try to overcome the difficulties of discretizing
the new problem. Mixed formulations bring new features to the table: they compute an
approximation of the flux (the gradient in the case of the Laplacian) with better quality
than the FEM (it has some conservation properties the FEM solution hasn’t) and they
can be easily postprocessed element by element to yield higher order approximations.
While we will not have a look at them in this course, there are problems that have mixed
structure from the very beginning: the most popular one is the Stokes problem, modeling
viscous fluid flow. Mixed finite elements are also a good excuse to present divergence-
conforming finite elements, closely related to the curl-conforming finite elements that are
used in electromagnetism.

1 The mixed Laplacian

1.1 Problems with mixed form

Being ambitious. I believe that at this time we can be ambitious and work in two
and three dimensions at the same time. You will barely notice the difference at the time
of formulating the problems. When we discretize, we will have to count depending on
the dimension d (again, d = 2 or d = 3) and we will do some funny renaming to avoid
notational duplications like referring to edges/faces depending on the dimension.

The model problem. We consider a symmetric-matrix-valued coefficient κ : Ω→ Rd×d
sym

that, as usual, is assumed to be bounded and uniformly positive definite

(κ(x)ξ) · ξ ≥ κ0|ξ|2 ∀x ∈ Ω, ∀ξ ∈ Rd.

152

Note that this property is then inherited by the inverse matrix

a := κ−1 : Ω→ Rd×d
sym.

I am going to use the coefficient a to avoid having to write κ−1 way too many times. You’ll
see why soon. The problem is a generalized Laplacian with mixed boundary conditions

−∇ · (κ∇u) = f in Ω,

u = g0 on ΓD,

(κ∇u) · ν = g1 on ΓN .

We introduce a new variable, the flux1

q := κ∇u.

The modified set of equations has a very particular structure:
aq−∇u = 0 in Ω, (state equation)

∇ · q = −f in Ω, (equilibrium)

u = g0 on ΓD,

q · ν = g1 on ΓN .

This model is often called Darcy flow. It corresponds to a linearized version of the
equations of fluid flow in saturated porous media.

Weak formulation. We are going to use integration by parts in the state equation,
and leave the equilibrium equation as is (more or less). In that way q and its associated
test function will be subject to the divergence operator, while all the derivatives will have
disappeared from u. We choose a smooth vector field p such that p · ν = 0 on ΓN (which
is the homogeneous version of the boundary condition satisfied by q). We multiply by p
and integrate by parts (using the divergence theorem)∫

Ω

(aq) · p =

∫
Ω

∇u · p

= −
∫

Ω

u (∇ · p) +

∫
Γ

u (p · ν)

= −
∫

Ω

u (∇ · p) +

∫
ΓD

g0 (p · ν).

In the last line we have substituted the Dirichlet boundary condition and eliminated the
integral over ΓN by imposing p ·ν = 0 on ΓN . The equilibrium equation (or conservation

1The actual flux, if we think of heat diffusion, would be −κ∇u. This leads to some sign changes in
what follows. Both options are fine. I’ll stick to the positive sign for no particular reason but to avoid a
couple of minus signs in the formulation.

153

of mass, if this is fluid flow; or conservation of energy if this is heat transfer) is just written
in the equivalent form ∫

Ω

(∇ · q)v = −
∫

Ω

f v

for an arbitrary test function v. Pending the definition of the correct function spaces,
here’s the full variational formulation:

q · ν = g1 on ΓN ,∫
Ω

(aq) · p +

∫
Ω

u (∇ · p) =

∫
ΓD

g0 (p · ν) ∀p, p · ν = 0 on ΓN ,∫
Ω

(∇ · q)v = −
∫

Ω

f v ∀v.

This is probably a good moment to emphasize what has happened to the boundary con-
ditions:

• the Dirichlet boundary condition has moved to the right-hand side of the first equa-
tion (it has become natural),

• the Neumann boundary condition is kept apart from the integral expressions (it has
become essential).

This goes in line to a comment at the beginning of this course, saying that natural/essential
for Neumann/Dirichlet was because of the role of these conditions in the weak formulation
and nothing else.

A space for vector fields. Consider the set C1(Ω)d of C1 vector fields up to the bound-
ary of Ω and the norm

‖q‖2
div,Ω := ‖q‖2

Ω + ‖∇ · q‖2
Ω =

∫
Ω

(
|q|2 + |∇ · q|2

)
.

We can then close the space C1(Ω)d with respect to this norm to make it a Hilbert space.
The inner product is easy to figure out from the definition of the norm

(q,p)div,Ω =

∫
Ω

q · p +

∫
Ω

(∇ · q)(∇ · p).

The Hilbert space we obtain is

H(div,Ω) = {q : Ω→ Rd : q ∈ L2(Ω)d, ∇ · q ∈ L2(Ω)},

where, as it was the case with the gradient in H1(Ω), the divergence operator has to be
understood in a generalized sense. For a vector field q ∈ H(div,Ω) it makes sense to
define the normal trace q ·ν. This normal component is defined in a very weak way: it is
so weak that it cannot be identified to a function defined on Γ. We will not worry about
this.

154

More and more notation. It is now the moment to define spaces:

V := H(div,Ω),

V0 := {q ∈ H(div,Ω) : q · ν = 0 on ΓN},
M := L2(Ω).

(The letter M comes from multiplier. This will be clear when we talk about saddle point
problems.) We have two bilinear forms

a : V ×V→ R b : V ×M → R

given by

a(q,p) :=

∫
Ω

(aq) · p

b(q, v) :=

∫
Ω

(∇ · q) v

and the linear maps

`(p) :=

∫
ΓN

g0(p · ν), χ(v) = −
∫

Ω

f v.

The weak formulation above can now be written in very precise terms:
(q, u) ∈ V ×M,

q · ν = g1 on ΓN ,

a(q,p) + b(p, u) = `(p) ∀p ∈ V0,

b(q, v) = χ(v) ∀v ∈M.

Note that

b(q, v) =

∫
Ω

(∇ · q) v = 0 ∀v ∈M, ⇐⇒ ∇ · q = 0.

1.2 A taste of theory

What comes next. We are not going to enter into great details of the theory of mixed
methods, mainly because is slightly harder than the nice Lax-Milgram-based theory of
coercive bilinear forms. The functional analysis background is, however, not that com-
plicated. It requires some familiarity with different versions of the closed graph theorem.
At the continuous level, the main difficulty arises from having verify one of the hypoth-
esis. The real McCoy in this theory is numerics. In the coercive world the stability or
well-posedness of the discrete problem is inherited from the continuous problem. This is
not the case with mixed methods, where some strong compatibility conditions between
the spaces used to discretize V and M will need to be imposed.

155

The Babǔska-Brezzi theory. Let us go step by step in the requirements of the theory.
(We will not giving it at its most general.) For simplicity, let us assume that g1 = 0 and
let us rename the space

V := {q ∈ H(div,Ω) : q · ν = 0 on ΓN},

so that our problem is
(q, u) ∈ V ×M,

a(q,p) + b(p, u) = `(p) ∀p ∈ V,

b(q, v) = χ(v) ∀v ∈M.

The first group of hypotheses are to be expected:

1. The spaces V and M are Hilbert spaces.

2. The bilinear form a is bounded

|a(q,p)| ≤ Ca‖q‖V ‖p‖V ∀q,p ∈ V.

3. The bilinear form b is bounded

|b(q, v)| ≤ Cb‖q‖V ‖v‖M ∀q ∈ V, v ∈M.

4. The linear form ` is bounded

|`(p)| ≤ C`‖p‖V ∀p ∈ V.

5. The linear form χ is bounded

|χ(v)| ≤ Cχ‖v‖M ∀v ∈M.

In our original case we had the bigger space H(div,Ω) and boundedness should be required
there in every occurrence of V (hypotheses 1,2 3, and 4.) If we go back to our example
we can see easily that the hypotheses 2, 3, and 5 are really easy to verify. Hypothesis 4
is a consequence of the following inequality:∣∣∣∣∫

ΓD

(p · ν)g0

∣∣∣∣ ≤ Cg0‖p‖div,Ω ∀p ∈ H(div,Ω).

However, this is not a trivial inequality to prove unless we gather some familiarity with the
space H1/2(ΓD) mentioned in the last lesson, and its dual space. Before we add another
hypothesis, we need to define a new space

Z = {q ∈ V : b(q, v) = 0 ∀v ∈M}.

Here’s the next hypothesis:

156

6. The bilinear form a is coercive in Z:

a(q,q) ≥ α‖q‖2
V ∀q ∈ Z.

Going back to our particular case, we have already recognized

Z = {q ∈ V0 : ∇ · q}

and therefore

a(q,q) =

∫
Ω

(aq) · q

≥ a0

∫
Ω

|q|2 (positivity of a)

= a0

(∫
Ω

|q|2 +

∫
Ω

|∇ · q|2
)
. (q ∈ Z)

What’s missing is the difficult hypothesis, dealing with the compatibility of the spaces V
and M through the bilinear form b. There are many ways of expressing this hypothesis.
Let me write one here, and then we will move to a discussion and to some (surprisingly?)
equivalent formulations:

7. There exists β > 0 such that

sup
0 6=q∈V

b(q, v)

‖q‖V
≥ β‖v‖M ∀v ∈M.

The inf-sup condition. Let’s keep it abstract for a moment. There are equivalent
formulations for Hypothesis 7 above:

• There exists β > 0 such that

inf
0 6=v∈M

sup
0 6=q∈V

b(q, v)

‖v‖M‖q‖V
≥ β.

This is one traditional way of writing the hypothesis, which is often called the
infimum-supremum condition, or, in short, the inf-sup condition. (More about
names in a while.) A more natural way to write this condition is, obviously,

inf
0 6=v∈M

sup
0 6=q∈V

b(q, v)

‖v‖M‖q‖V
> 0.

(You just then define β to be the inf-sup in the left-hand side of the inequality.)

• For every χ : V → R linear and bounded, the problem

b(q, v) = χ(v) ∀v ∈M

admits at least one solution. (The solution will not be unique, because there’s the
set Z with all the functions q making the left-hand side vanish.)

157

• For every linear `0 : V→ R such that

|`0(p)| ≤ C`0‖p‖V , `0(p) = 0 ∀p ∈ Z,

there exists a unique solution to the problem

u ∈M, b(p, u) = `0(p) ∀p ∈ V,

and we can bound
‖u‖M ≤ C × C`0 .

There’s a long history of renaming and attributing this hypothesis (or the entire set of
seven hypotheses above) to different authors. It is common to refer to it as the Babuška-
Brezzi condition2, or even the Ladyzhenskaya-Babuška-Brezzi condition3, shortened to
LBB. The hypothesis is actually implied by (or can be rephrased as a version of) the
Banach Closed Graph Theorem. In our particular case, with V = V0 and M = L2(Ω),
this hypothesis is equivalent to the following property: for every f ∈ L2(Ω) there exists
at least one q ∈ V0 such that

∇ · q = −f.

(The minus sign is just because..., or not). How do we check this? Take f ∈ L2(Ω) and
solve the PDE

−∆v = f in Ω,

v = 0 on ΓD,

∂νv = 0 on ΓN .

The answer to our problem is the vector field q = ∇v (recall that ∆ = ∇ · ∇), although
there are some minor details about Sobolev spaces to be taken care of.

Saddle point problems. Let us go back to the general problem
(q, u) ∈ V ×M,

a(q,p) + b(p, u) = `(p) ∀p ∈ V,

b(q, v) = χ(v) ∀v ∈M.

We now assume that
a(q,p) = a(p,q)

(symmetry) and
a(q,q) ≥ 0 ∀q ∈ V.

Then, the variational problem is equivalent to a minimization problem with restrictions:

minimize 1
2
a(q,q)− `(q) subject to b(q, v) = χ(v) ∀v ∈M.

2Named after Ivo Babuška, a powerhouse in the theory and praxis of the Finite Element method, and
Franco Brezzi, father of much of what is known in mixed Finite Element.

3Adding here the name of Olga Ladyzhenskaya, Russian PDE theorist extraordinaire.

158

Note that in this minimization problem the unknown u ∈ M has disappeared. We can
bring it back in the Lagrangian

L(q, u) := 1
2
a(q,q)− `(q) + (b(q, u)− χ(u)) .

The constrained minimization problem above is equivalent to the saddle point problem

L(q, v) ≤ L(q, u) ≤ L(p, u) ∀(p, v) ∈ V ×M.

This can be read as follows: if we move from the equilibrium point (q, u) in the direction
of V we see the Lagrangian increase, while if we move in the direction of M , we see
the Lagrangian decrease. This is why the problem in the Lagrangian is a saddle point
problem, and why many people refer to the original variational formulation in V ×M
as a saddle point problem. The variable u plays the role of a Lagrange multiplier for the
constrained minimization problem.

1.3 Galerkin approximation

Discretizations of H(div,Ω). We will need some time to define a nice approximation
for the mixed Laplacian, so we will content ourselves with some general arguments. How-
ever, let us just first say what we should expect from a finite element style discretization
of H(div,Ω). Let Th be a triangulation/tetrahedrization of the polygonal/polyhedral do-
main Ω. For simplicity (to avoid separating two and three dimensions) we will use the
following conventions:

• When in three dimensions (d = 3) we will call the faces of a tetrahedron faces.
When in two dimensions, we’ll call edges of a triangle faces as well.

• We will write Fh to denote the set of all faces of the triangulation. Each face will
have a unit normal vector νF assigned to it. When F ∈ Fh is in Γ, we will assume
that νF points outwards.

• We will write F(K) to denote the set of d+ 1 faces of K ∈ Th. When seen from the
point of view of the element, the normals to the faces will point outwards. The local
exterior orientation doesn’t have to coincide with the intrinsic orientation assigned
to the face.

Recall that the condition for a piecewise smooth function to be in H1(Ω) was continuity.
The requirements for vector fields in H(div,Ω) are less demanding: given qh : Ω → Rd

such that q|K is smooth for every K ∈ Th

qh ∈ H(div,Ω) ⇐⇒ qh · νF is continuous across F for all F ∈ Fh.

In other words, if two elements K and K ′ meet in a face F with preassigned normal νF ,
we need

qh|K · νF = qh|K′ · νF on F .

159

A general discretization. Consider finite dimensional subspaces

Vh ⊂ V, Mh ⊂M.

(Be warned, as of now, that many choices of pairs might not work from the point of view
of even delivering a uniquely solvable system.) We then define the Galerkin discretization
as the problem:

(qh, uh) ∈ Vh ×Mh,

a(qh,ph) + b(ph, uh) = `(ph) ∀ph ∈ Vh,

b(qh, vh) = χ(vh) ∀vh ∈Mh.

Take now two bases:

{ϕ1, . . . ,ϕN} for Vh, and {µ1, . . . , µS} for Mh.

The first discrete equation is equivalent to

a(qh,ϕi) + b(ϕi, uh) = `(ϕi) i = 1, . . . , N,

while the second one is equivalent to

b(qh, µi) i = 1, . . . , S.

We then decompose the unknowns in the given bases:

qh =
N∑
j=1

qjϕj, uh =
S∑
j=1

ujµj

and substitute in the above equations

N∑
j=1

a(ϕj,ϕi)qj +
S∑
j=1

b(ϕi, µj)uj = `(ϕi) i = 1, . . . , N,

S∑
j=1

b(ϕj, µi)qj = χ(µi) i = 1, . . . , S.

We can organize everything with two matrices A ∈ RN×N and B ∈ RS×N with elements

aij = a(ϕj,ϕi) i, j = 1, . . . , N,

bij = b(ϕj, µi) i = 1, . . . , S, j = 1, . . . , N,

are two vectors for the right-hand sides ` ∈ RN and χ ∈ RS with elements

`i = `(ϕi), χi = χ(µi).

The discrete problem is then equivalent to the system[
A B>

B O

] [
q
u

]
=

[
`
χ

]
.

Note that I have used the letter q to denote the vector with the coefficients of the decom-
position of qh (which approximated q) in the given bases. I hope this is not too confusing.
Two pointers:

160

• If the bilinear form a is symmetric (case of saddle point problems), then the matrix[
A B>

B O

]
is symmetric. It is highly indefinite though: note the S × S block of zeros in the
diagonal.

• Note also that if S > N (the dimension of Mh is larger than the dimension of Vh),
then the system cannot be invertible, because we have a much too large block of
zeros in the diagonal. You should try to think of the matrix B as rectangular with
less rows than columns.

The hypothesis for discretization. Differently from what happened in coercive (Lax-
Milgram based) problems, Galerkin methods for mixed problems do not have guaranteed
quasioptimality. There’s a simple reason why. You just need to take Mh to be of higher
dimension than Vh and the matrix that you get cannot be invertible. We need to identify
the following set:

Zh := {qh ∈ Vh : b(qh, vh) = 0 ∀vh ∈ Vh}.

The discrete hypotheses we will assume are:

• Zh ⊂ Z, that is, if qh ∈ Vh and

b(qh, vh) = 0 ∀vh ∈Mh =⇒ b(qh, v) = 0 ∀v ∈M.

• A uniform discrete inf-sup condition is stated by assuming the existence of
β̃ > 0, independent4 of h, such that

sup
06=qh∈Vh

b(qh, vh)

‖qh‖V
≥ β̃‖vh‖M ∀vh ∈Mh.

If these hypotheses (and the hypotheses for the continuous problem) are met, then the
discrete problem has a unique solution and we can bound:

‖q− qh‖V + ‖u− uh‖M ≤ C

(
inf

ph∈Vh
‖q− ph‖V + inf

vh∈Mh

‖u− vh‖M
)
.

This is quasioptimality of the solution with respect to the best approximation in both
discrete spaces. There is another way, probably more rigorous, of presenting the uniform
discrete inf-sup conditions. We first define

βh := inf
0 6=vh∈Mh

sup
06=qh∈Vh

b(qh, vh)

‖vh‖M‖qh‖V
4This hypothesis might sound unclear at this stage. It moves you to the context of not having just

two spaces Vh,Mh but a whole sequence parametrized in h.

161

and assume that βh > 0. (If βh = 0 it is possible to show that the system is not invertible
and we would be done.) Then, assuming all other conditions,

‖q− qh‖V + ‖u− uh‖M ≤ Ch

(
inf

ph∈Vh
‖q− ph‖V + inf

vh∈Mh

‖u− vh‖M
)
.

where Ch is an increasing function of the quantity 1/βh. Being very careful, it can be
shown that Ch ≤ C/β3

h, where C depends on other quantities for the continuous problem
(the boundedness constants Ca and Cb and the coercivity constant α).

Back to our example. The discrete uniform inf-sup condition is never easy to ver-
ify. However, the condition Zh ⊂ Z is sometimes quite obvious. Imagine that we have
subspaces

Vh ⊂ H(div,Ω) Mh ⊂ L2(Ω)

and that
div ph ∈Mh ∀ph ∈ Vh.

Recall our bilinear form

b(q, v) =

∫
Ω

(∇ · q) v.

If ph ∈ Vh satisfies b(ph, vh) = 0 for all vh ∈Mh, then

0 = b(ph, div ph) =

∫
Ω

|∇ · ph|2

and therefore ∇ · ph = 0, which implies b(ph, v) = 0 for all v ∈M .

2 The Raviart-Thomas space

In this section we discuss the lowest order Raviart-Thomas space5. We will start with a
local description of the space, move to a global description, and finally present how to
change to the reference element, which is way less obvious than one might naively imagine.

2.1 The local space

The space. On an element (triangle or tetrahedron) K we define the space

RT0(K) := {p(x) = a + bx : a ∈ Rd, b ∈ R}.

Just to be clear, an element of RT0(K) looks like this when d = 2[
a1

a2

]
+ b

[
x1

x2

]
5Named after Pierre-Arnaud Raviart and Jean-Marie Thomas, both of them French as is easy to guess

from their names. On a personal note, Raviart was my academic grandfather, although I’ve never met
him.

162

and like this a1

a2

a3

+ b

 x1

x2

x3

when d = 3.

Its properties. All the following properties are easy to verify.

1. It is clear that the dimension of RT0(K) is d+ 1 and

P0(K)d ⊂ RT0(K) ⊂ P1(K)d,

which places RT0(K) between the d-dimensional space of constant vector fields and
the d(d+ 1)-dimensional space of linear polynomials with vector-valued coefficients.

2. Noticing that ∇·x = d, it is obvious that if p(x) = a+bx, then ∇·p = d b ∈ P0(K).
Therefore, if p ∈ RT0(K) and ∇ · p = 0, then p ∈ P0(K)d.

3. If p ∈ RT0(K) and νF is normal to F ∈ F(K), then

p · νF |F ∈ P0(F),

that is, the normal component of p on ∂K is constant on each face. This is actually
quite easy to verify. The plane containing F can be written with the equation
νF · x = c. Then for x ∈ F ,

p(x) · νF = a · νF + b(x · νF) = a · νF + b c.

The integrated normal fluxes on the faces∫
F

p · νF = |F |p · νF |F F ∈ F(K),

determine uniquely an element p ∈ RT0(K). In other words, given numbers cF for
F ∈ F(K), there exists a unique p ∈ RT0(K) such that∫

F

p · νF = cF ∀F ∈ F(K).

Let us prove uniqueness. Assume that∫
F

p · νF = 0 ∀F ∈ F(K).

Then

0 =
∑

F∈F(K)

p · νF =

∫
∂K

p · ν =

∫
K

∇ · p = |K|∇ · p,

by the divergence theorem and the fact that ∇ · p is constant. This implies that
p(x) = a. Going back to the beginning of the argument, we have

a · νF ∀F ∈ F(K),

163

but this implies that a = 0. The argument for existence is quite standard in linear
algebra. Consider the map

RT0(K) −→ Rd+1

p 7−→
(∫

F
p · νF

)
F∈F(K)

.

This is a linear transformation between two spaces of the same dimension, and we
have shown that it does not have a null-space. Therefore, it is invertible.

The local Raviart-Thomas interpolation operator. Let q ∈ C(K)d and consider

qK ∈ RT0(K) such that

∫
F

qK · νF =

∫
F

q · νF ∀F ∈ F(K).

We will refer to qK as the local Raviart-Thomas interpolant. Note that if q ∈ C1(K)d,
then

|K|∇ · qK =

∫
K

∇ · qK =

∫
∂K

qK · ν =
∑

F∈F(K)

∫
F

qK · νF

=
∑

F∈F(K)

∫
F

q · νF =

∫
∂K

q · ν =

∫
K

∇ · q,

and therefore

P0(K) 3 ∇ · qK =
1

|K|

∫
K

∇ · q,

which can be written with words: the divergence of the RT interpolant is the best constant
approximation (in the sense of L2(K)) of the divergence of the field. A basis for RT0(K)
can be constructed by numbering the faces of K and then looking for

NK
α ∈ RT0(K) such that

∫
Fβ

NK
α · νFβ = δαβ, α, β = 1, . . . , d+ 1.

2.2 The global space

Construction of the space. The full RT space is obtained by gluing local RT spaces
making the normal fluxes coincide. The definition is the following:

RT0
h = {qh : Ω→ Rd : qh ∈ H(div,Ω), qh|K ∈ RT0(K) ∀K ∈ Th}.

An element of RT0
h is determined by the values of the integrals∫

F

qh · νF , F ∈ Fh.

Why? Choose these values to be whatever you want them to be. Then go to the elements.
In each element you can reconstruct qh based on its boundary fluxes (you might need to
change the sign of the flux if the orientation of the normal vectors does not coincide).
Since we have fixed the interelement fluxes, we know that the reconstructed element is an
element of H(div,Ω).

164

Global basis functions. For each F ∈ Fh, we can now define the function ϕF ∈ RT0
h

given by the conditions ∫
F ′
ϕF · νF ′ = δF,F ′ , ∀F ′ ∈ Fh.

The support of ϕF is the set of two elements surrounding F (one element if F ⊂ Γ). It
is important to note that ϕF is not zero on the other faces of the elements that share F
as a face. It is only the normal component that vanishes on these faces. If we number
the faces Fh = {F1, . . . , FN}, we end up with an indexed basis of RT0

h. An element of this
space is then represented as

qh =
∑
F∈Fh

qFϕF =
∑
F∈Fh

(∫
F

qh · νF
)
ϕF .

You can compare this with the Lagrange (nodal) basis of the space of P1 Finite Elements.
In that case, coefficients of representation of a function in the basis were nodal values,
while here we control fluxes on the faces. Note that the dimension of the RT space is the
number of faces:

dim RT0
h = #Fh.

We will come to the relation between local and global bases when we study implementation
issues for the RT space.

Raviart-Thomas interpolation. The RT interpolant of q ∈ C(Ω)d is the only qh ∈
RT0

h such that ∫
F

qh · νF =

∫
F

q · νF ∀F ∈ Fh.

The interpolant is well defined because the normal fluxes determine uniquely an element
of RT0

h. We can even give an explicit expression for the interpolant

qh =
∑
F∈Fh

(∫
F

q · νF
)
ϕF .

2.3 Piola transformations

A preliminary computation. We still need to relate the RT basis on the reference
element with the basis on the physical element. This is going to be less trivial than just
using the transformation

FK : K̂ → K, FK(x̂) = BKx̂ + b.

Vector fields are mapped to vector fields in a slightly different way in order to compensate
that normals are not mapped to normals (affine maps do not preserve angles). One easy
way to remember how to get the transformation of vector fields that we will be using is

165

the following: we bring in a scalar field u : K → R and a vector field q : K → Rd and we
want to define q̂ : K̂ → Rd so that∫

K

q · ∇u =

∫
K̂

q̂ · ∇û, where, as usual, û = −u ◦ FK .

Recalling that (∇u) ◦ FK = B>K∇(u ◦ FK), we can compute∫
K

q · ∇u =

∫
K̂

(q ◦ FK) · ((∇u) ◦ FK)| det BK |

=

∫
K̂

(
| det BK |B−1

K q ◦ FK
)︸ ︷︷ ︸

q̂

·∇û.

We thus reach the Piola transformation6 for the vector field q,

q̂ = | det BK |B−1
K q ◦ FK : K̂ → Rd,

which can be inverted to yield

q =
1

| det BK |
BKq̂ ◦ F−1

K : K → Rd,

when we want to push forward a vector field from the reference element to the physical
element.

More work on the Piola transformations. With some careful use of the chain rule
(the vector notation is quite cumbersome here, and it’s better to use index notation like
physicists and engineers) it can be proved that

∇ · q̂ = | det BK |(∇ · q) ◦ FK

and therefore ∫
K

(∇ · q)u =

∫
K̂

(∇ · q̂) û.

Finally, the transformations of products of divergences by scalar fields and gradients by
vector fields prove that∫

∂K

(q · ν)u =

∫
K

(∇ · q)u+

∫
K

q · ∇u (divergence theorem)

=

∫
K̂

q̂ · ∇û+

∫
K̂

(∇ · q̂) û (we just saw this)

=

∫
∂K̂

(q̂ · ν̂) û. (divergence theorem again)

For this identity, we can infer (the mathematics needed for this are not complicated,
but they need some careful treatment of regularity of functions, or good old plain hand-
waving) that ∫

F

(q · ν)u =

∫
F̂

(q̂ · ν̂) û,

where F̂ ∈ F(K̂) and F is the face of K that is transformed from F̂ .

6Named after Gabrio Piola. If you have taken a class in continuum solid mechanics, you won’t be
surpirsed to find an Italian name here.

166

Piola, Raviart, and Thomas. Here’s a computation that explains why the RT ele-
ments get along so well with the divergence operator. We start with an RT polynomial
in the reference element

p̂(x̂) = â + b̂x̂.

Then, writing x = FK(x̂) = BKx̂ + bK for the transformed variable, it follows that

(p ◦ FK)(x̂) =
1

| det BK |
BKp̂(x̂) (def. of Piola tr.)

=
1

| det BK |
(BK â + b̂BKx̂)

=

(
1

| det BK |
(BK â− b̂bK)

)
︸ ︷︷ ︸

a

+
b̂

| det BK |︸ ︷︷ ︸
b

FK(x̂),

or, equivalently,
p(x) = a + bx ∈ RT0(K).

This proves that RT fields in the reference element are mapped to RT fields in the physical
element. Now, recall the ‘Lagrange’ basis associated to the RT degrees of freedom:

NK
α ∈ RT0(K) such that

∫
Fβ

NK
α · νFβ = δαβ, α, β = 1, . . . , d+ 1.

Using the Piola transform and how it interacts with integrals on faces, it is clear that if
N̂α is the basis on the reference element∫

F̂β

N̂α · ν̂ F̂β = δαβ,

then

NK
α =

1

| det BK |
BKN̂α ◦ FK , α = 1, . . . , d+ 1.

3 RT discretization of the mixed Laplacian

3.1 General ideas

Back to the model problem. We return to the weak formulation of our ‘glorified
Laplacian’7, given in the form

(q, u) ∈ V ×M,

q · ν = g1 on ΓN ,

a(q,p) + b(p, u) = `(p) ∀p ∈ V0,

b(q, v) = χ(v) ∀v ∈M,

7Some years ago, glorified Laplacian became a way of referring to any more or less trivial extension
of the Laplacian that made it look much more general or ‘applied.’

167

where

V = H(div,Ω),

V0 = {p ∈ V : p · ν = 0 on ΓN},
M = L2(Ω),

a(q,p) :=

∫
Ω

(aq) · p, b(q, v) :=

∫
Ω

(∇ · q) v,

and

`(p) :=

∫
ΓN

g0(p · ν), χ(v) = −
∫

Ω

f v.

We choose the following discrete spaces:

Vh = RT0
h = {qh ∈ H(div,Ω) : qh|K ∈ RT0(K) ∀K ∈ Th},

Vh,0 = {ph ∈ Vh : ph · ν = 0 on ΓN},
Mh = {vh : Ω→ R : vh|K ∈ P0(K) ∀K ∈ Th}.

This means that we pair the (lowest order) Raviart-Thomas space for vector fields with
the space of piecewise constant functions. Let’s go for some fast bullet points:

• The dimension of Vh is the number of faces. If we number Fh = {F1, . . . , FN} and
we assign a unit normal vector νF to each F , then the basis is determined by∫

Fj

ϕi · νFj = δij.

• Let Neu ⊂ {1, . . . , N} be the list of Neumann faces and Free = {1, . . . , N} \ Neu.
Then

{ϕi : i ∈ Free}
is a basis for Vh,0. The reason is simple: the normal component on ΓN of a function
in RT0

h vanishes if and only if the (constant) flux on each Neumann face vanishes.
We then just need to get rid of the basis functions associated to Neumann faces.

• Let {K1, . . . , KS} be a numbering of Th. We can then define µj : Ω→ R to be the
characteristic function of Kj

µj =

{
1, in Kj,
0 elsewhere.

Then {µi : i = 1, . . . , S} is a basis for Mh and the dimension of Mh is the number
of elements.

• It is clear that
qh ∈ Vh ⇐⇒ ∇ · qh ∈Mh.

Moreover ∫
Ω

(∇ · qh) vh = b(qh, vh) = χ(vh) = −
∫

Ω

f vh ∀vh ∈Mh

168

if and only if (take vh = µi for all i)

(∇ · qh)|K =
1

|K|

∫
K

∇ · qh = − 1

|K|

∫
K

f ∀K ∈ Th.

Thinking of the boundaries of the elements instead, we can write∫
∂K

qh · ν =

∫
K

∇ · qh = −
∫
K

f,

which means that the method is going to be locally conservative.

• Following element by element the arguments used in the local RT interpolation, it
follows that if q ∈ C1(Ω)d, and Πhq is its RT interpolant, then∫

Ω

(∇ · Πhq)vh =

∫
Ω

(∇ · q)vh ∀vh ∈Mh.

This implies that the divergence of the RT interpolant is the best L2(Ω) approxi-
mation of ∇ · q in M .

We will not deal here with the discrete inf-sup condition. Let us just be said that it is
satisfied, so we now that the pair Vh×Mh is a valid pair for the problem where we want
to use it.

The discrete system. The Galerkin approximation of our model problem is
(qh, uh) ∈ Vh ×Mh,∫
F

qh · ν =
∫
F
g1, F ⊂ ΓN ,

a(qh,ph) + b(ph, uh) = `(ph) ∀ph ∈ Vh,0,

b(qh, vh) = χ(vh) ∀vh ∈Mh.

The key matrices and vectors are

aij =

∫
Ω

(aϕj) ·ϕi, i, j = 1, . . . , N,

bij =

∫
Ω

(∇ ·ϕj)µi i = 1, . . . , S, j = 1, . . . , N,

`i =

∫
ΓD

g0(ϕi · ν) i = 1, . . . , N

χi =−
∫

Ω

f µi i = 1, . . . , S.

Note that

bij =

∫
Ki

∇ ·ϕj =

∫
∂Ki

ϕj · ν,

169

which is going to simplify the computation of this matrix quite a lot. Also

`i =

1

|Fi|

∫
Fi

g0 ≈ g0(mFi), if Fi ⊂ ΓD,

0, otherwise,

and

χi = −
∫
Ki

f ≈ −|Ki|f(bKi).

Here we have used low order quadrature approximations for the right-hand sides of the
equation, evaluating the Dirichlet condition in the midpoint/barycenter of the Dirichlet
faces and the source term in the barycenter of the elements. We can also simplify the
imposition of the essential (Neumann) condition by approximating∫

F

qh · ν =

∫
F

g1 ≈ |F |g1(mF).

With this simplication

qh =
∑
j∈Free

qjϕj +
∑
j∈Neu

|Fj|g1(mFj)ϕj.

3.2 Direct implementation

In this section, we are going to detail how to implement the RT approximation for the
model mixed problem in two dimensions and assuming that the matrix a = κ−1 is the
identity matrix. Since we are back to the two dimensional case, let’s call edges edges
instead of faces.

Basic ideas. The kind of information that is needed for the lowest order RT element is
included in what is needed to code the P2 FEM in a triangulation.

• We need to number edges. This is an Nedg×2 list connecting pairs of vertices of the
triangulation. The orientation of the edge is naturally induced by this list. When
we go from the beginning to the end of the edge, we assume that the normal vector
points to the right. Boundary edges should be numbered positively, that is, the
normal should point outwards.

• We need to identify Neumann edges, giving a list Neu ⊂ {1, . . . , Nedg} with the
indices of edges contained in ΓN . We then create Free = {1, . . . , Nedg} \ Neu.

• We need a list of edges counted by element. This would be an Nelt× 3 list counting
(in a preset order that is established in the reference element) the faces.

• We also need a list of orientations: the orientation of the `-th face of the element
K is positive when the outward pointing normal vector on this face coincides with
the pre-established normal vector.

• For the right-hand side of the first equation, we need a list of Dirichlet edges.

170

Assembly. The matrices A and B have to be prepared using local-to-global information
and, in the case of A, an assembly process. The matrix B is actually very simple to create.
Assume that the element Ki has edges {n1, n2, n3} ⊂ {1, . . . , Nedg} with orientations
{s1, s2, s3} (here si = ±). Then∫

Ki

∇ ·ϕnα =

∫
∂Ki

ϕnα · ν = sα

∫
Fnα

ϕnα · ν = sα.

All other elements of the i-th row of B vanish, since they correspond to edges that are
not edges of Ki. We then only need to place the orientations of the edges (counted by
element) where the list of edges counted by elements tells us to. The matrix A requires
some additional work. Note first that

aij =

∫
K

ϕj ·ϕi

vanishes if (i, j) are not vertices of the same element. We will start the assembly process
by constructing local matrices

AK =

[∫
K

NK
α ·NK

β

]3

α,β=1

.

This matrix is not directly assembled, since we have to take into account the orientations
of the edges. Let’s try to clarify this issue with an example. Assume that the element K
has edges {3, 8, 4} with orientations {−,+,+}. Then

ϕ3|K = −NK
1 , ϕ8|K = NK

2 , ϕ4|K = NK
3 .

Instead of assembling the matrix aK11 aK12 aK13

aK21 aK22 aK23

aK31 aK32 aK33

 ,
we need to assemble aK11 −aK12 −aK13

−aK21 aK22 aK23

−aK31 aK32 aK33

 ,
that is, we change the sign of the rows and columns corresponding to edges that have a
negative global orientation from the point of view of K. Alternatively, we can think of
creating the matrix

sKα s
K
β

∫
K

∫
K

NK
α ·NK

β ,

which uses some global information (the orientations). After the signs have been corrected,
the assembly is done in a very similar way as we do the assembly of the P1 FEM, but
using the information for the list of edges counted by element instead of indexing vertices
by element.

171

A computation in the reference element. The local matrix AK can be computed
in the reference element. Recall that

Nα ◦ FK =
1

| det BK |
BKN̂α.

Then ∫
K

NK
α ·NK

β =
1

| det BK |

∫
K̂

(BKN̂α) · (BKN̂β)

=

∫
K̂

(CKN̂α) · N̂β where CK =
1

| det BK |
B>KBK .

If we separate components

N̂α =

[
N̂1
α

N̂2
α

]
, CK =

[
cK11 cK12

cK21 cK22

]
,

we can write∫
K

NK
α ·NK

β = cK11

∫
K̂

N̂1
αN̂

1
β + cK12

∫
K̂

N̂2
αN̂

1
β + cK21

∫
K̂

N̂1
αN̂

2
β + cK22

∫
K̂

N̂2
αN̂

2
β ,

which reduces all the work to precomputing four (actually three) matrices in the reference
element.

Imposition of essential BC. Similarly to what we did with the P1 FEM, we build the
full matrices A and B. The columns of [

A
B

]
corresponding to Neu indices will be multiplied by the Neumann BC values and moved
to the right-hand side. The rows of [

A B>
]

(and the entries of `) corresponding to Neu indices will be ignored in the final system.

4 Exercises

1. Compute the Lagrange basis for the lowest Raviart-Thomas space in the reference
element in the plane. Use it to compute the matrices 3× 3 matrices∫

K̂

N̂ l
αN̂

m
β , α, β = 1, 2, 3

for l,m ∈ {1, 2}. Here (N̂1
α, N̂

2
α) are the components of N̂α.

172

2. Compute the Lagrange basis for RT0(K̂) in three dimensions.

3. Let {ϕj} be the global Lagrange basis for RT0
h in two or three dimensions. Show

that the matrix ∫
Ki

∇ ·ϕj i = 1, . . . , Nelt, j = 1, . . . , Nfaces

does not have full row rank. Equivalently, show that its transpose has non-trivial
nullspace. (Hint. qh ≡ 1 ∈ RT0

h.)

173

Lesson 10

More on mixed elements

In this final lesson we continue with our study of mixed Finite Elements, introducing a
different form of implementing the RT system for the mixed Laplacian and some alter-
native mixed Finite Elements for the same problem. The notation of this lesson follows
that of the previous one and most concepts will not be reintroduced. Recall that we have
written the generalized Laplace equation in the form of two first order PDE

aq−∇u = 0 ∇ · q = −f in Ω,

with associated boundary conditions

u = g0 on ΓD, q · ν = g1 on ΓN .

This led to a weak formulation of mixed type

(q, u) ∈ V ×M,

q · ν = g1 on ΓN ,∫
Ω

(aq) · p +

∫
Ω

(∇ · p)u =

∫
ΓD

g0 (p · ν) ∀p ∈ V0,∫
Ω

(q · ν)v = −
∫

Ω

f v ∀v ∈M,

using the spaces

V = H(div Ω), V0 = {p ∈ V : p · ν = 0 on ΓN}, M = L2(Ω).

1 Hybridized implementation

1.1 An extended system with more multipliers

Motivation. One of the main disadvantages of dealing with mixed FEM is the odd
structure of the linear system, with a symmetric matrix that is highly indefinite and has
a large block of zeros in a diagonal position. With the RT elements there is an alternative
form of implementation that does the following:

174

• It decouples the system into element-by-element problems by adding some Lagrange
multipliers that deal with the continuity of qh · ν across faces.

• It finds an equivalent system where only the Lagrange multipliers are solved.

• Finally, we solve element by element to find qh and uh.

This might seem a quite convoluted way of doing things (it is!), but it is very efficient
and it has lead to the development of other very effective finite element methods in the
category of Discontinuous Galerkin Methods. The hybridized formulation of the Raviart-
Thomas mixed FEM is due to Douglas Arnold and Franco Brezzi. It has the additional
advantage of offering a new quantity whose convergence properties are good as well.

Notation. We will divide the faces into three groups:

• Interior faces F int
h ,

• Dirichlet faces Fdir
h ,

• Neumann faces Fneu
h .

Recall that Neumann faces play a separate role because it’s on them that the essential
boundary condition is imposed. Interior and Dirichlet faces go together at the time of
counting Free degrees of freedom, although Dirichlet faces have to be separated at the
time of computing the right hand side of the first equation.

Rethinking H(div)-conformity. Recall that we have the global RT space

Vh = {qh : Ω ∈ Rd : qh ∈ H(div,Ω), qh|K ∈ RT0(K)∀K ∈ Th}.

This space can be understood as the subspace of

Wh := {qh : Ω ∈ Rd : qh|K ∈ RT0(K)∀K ∈ Th}

consisting of functions such that∫
F

[[qh · ν]] = 0 ∀F ∈ F int
h .

The quantity [[qh · ν]] is the jump of qh · ν across F (remember that qh · ν|F is constant).
We also have ∫

F

qh · ν =

∫
F

g1 ∀F ∈ Fneu
h .

Let us then introduce the skeleton of the triangulation

∂Th := ∪{F : F ∈ Fh},

175

and some auxiliary spaces defined on it

Ξh := {ξh : ∂Th → R : ξh|∈P0(F) ∀F ∈ Fh},
Ξint
h := {ξh ∈ Ξh : ξh = 0 on Γ},
Ξ0
h := {ξh ∈ Ξh : ξh = 0 on ΓD},

Ξdir
h := {ξh ∈ Ξh : ξh|F = 0 F ∈ F int

h ∪ Fdir
h }.

We first write the conformity conditions (no jumps in normal component on internal faces)
in the following unusual form∑

K∈Th

∫
∂K

(qh · ν)ξh = 0 ∀ξh ∈ Ξint
h .

In this formula, the normal vectors are exterior to each of the elements. To see why
this formulation is equivalent to no jumping of normal components, isolate a single face
F ∈ F int

h and define

ξF =

{
1 in F ,
0 in all the other faces.

Testing with this ξF isolates a single face in two elements, with opposite normals, which
automatically creates the jump and forces its average to vanish. We can do slightly better
and impose the no-jump condition and the Neumann (essential) condition in a single
equation ∑

K∈Th

∫
∂K

(qh · ν)ξh =

∫
ΓN

g1 ∀ξh ∈ Ξ0
h.

Uncoupling the discrete state equation. The first discrete equation is∫
Ω

(aqh) · ph +

∫
Ω

(∇ · ph)uh =

∫
ΓD

g0(ph · ν) ∀ph ∈ Vh,0.

We can write it in this different way∑
K∈Th

∫
K

(aqh) · ph +
∑
K∈Th

∫
K

(∇ · ph)uh −
∑
K∈Th

∫
∂K

ρh(ph · ν) = 0,

where ρh ∈ Ξh is still to be determined, although we start by imposing that∫
F

ρh =

∫
F

g0 ⇐⇒
∫
F

ρh(ph · ν) =

∫
F

g0(ph · ν) ∀F ∈ Fdir
h .

In the sums of integrals over ∂K we have different types of faces:

• Internal faces appear twice, but the sum cancels because the test function ph is
div-conforming, that is, its normal component does not jump on internal faces.

• Dirichlet faces provide the integral over ΓD that appeared in the original formulation.

176

• Neumann faces do not appear in the formulation since ph · ν = 0 on them.

What we do now might seem quite bold, but there is some reason to be done. We impose
the equation∑

K∈Th

∫
K

qh · ph +
∑
K∈Th

∫
K

(∇ · ph)uh −
∑
K∈Th

∫
∂K

ρh(ph · ν) = 0, ∀ph ∈Wh,

that is, we relax the need of ph to be div-conforming and we relax the constraint ph ·ν = 0.
Instead, we consider the global system with qh (and its corresponding test function)
uncoupled:

(qh, uh, ρh) ∈Wh ×Mh × Ξh,∫
ΓD

ρhξh =

∫
ΓD

g0ξh ∀ξh ∈ Ξdir
h ,∑

K∈Th

∫
K

(aqh) · ph +
∑
K∈Th

∫
K

(∇ · ph)uh +
∑
K∈Th

∫
∂K

ρh(ph · ν) = 0, ∀ph ∈Wh,∑
K∈Th

(∇ · qh)vh = −
∑
K∈Th

∫
K

f vh ∀vh ∈Mh,∑
K∈Th

∫
∂K

(qh · ν)ξh =

∫
ΓN

g1 ξh ∀ξh ∈ Ξ0
h.

This looks pretty bad. The system looks even worse than the original one, but there
are several aspects to consider before we think how to implement it:

• The number of equations and unknowns matches. The dimensions of the trial spaces
are

dimWh = d+ 1︸ ︷︷ ︸
dimRT0

#Th, dimMh = #Th, dimΞh = #Fh,

while for testing we separate Dirichlet faces and all other faces.

• Surprisingly enough, the Dirichlet condition has become now essential (again) and
the Neumann foncition has found its place in the last equation.

• The second and third equations (state equations and conservation) can be written
element by element because the sapces Wh and Mh are completely decoupled. We
can then write instead∫

K

(aqh) · pK +

∫
K

(∇ · pK)uh +

∫
∂K

ρh(pK · ν) = 0, ∀pK ∈ RT0(K),∫
K

(∇ · qh)vK = −
∫
K

fvK ∀vk ∈ P0(K),

adding that we impose this for all K ∈ Th. There’s another way to see this. Forget-
ting about Dirichlet boundary conditions (take them to be zero so that ρh ∈ Ξ0

h),

177

and taking local bases for all the spaces we can find a matrix formulation with the
form (the matrices A and B are not the same that before) A B> C−>

B O O
C O O

 .
However, the matrices A and B are block diagonal, with many (as many as elements)
little blocks corresponding to each of the elements. The hybridization is the system
will consist in inverting those small blocks and deriving an equivalent system.

Why is this system equivalent to the original one? The argument is not com-
plicated, so let us have a look at it. First of all, let us check that the extended system
(with qh, uh, ρh as unknowns) is uniquely solvable. It is a square system (we’ve already
seen this), so we only need to verify that if the right-hand isde vanishes, then the solution
vanishes. Note that if ∑

K∈Th

∫
∂K

(qh · ν)ξh = 0 ∀ξh ∈ Ξ0
h,

then qh ∈ Vh,0. We then test the equation∑
K∈Th

∫
K

(aqh) · ph +
∑
K∈Th

∫
K

(∇ · ph)uh +
∑
K∈Th

∫
∂K

ρh(ph · ν) = 0, ∀ph ∈Wh,

with ph ∈ Vh,0 (no jumps, zero normal component on the Neumann faces) and use that∫
ΓD

ρhξh = 0 ∀ξh ∈ Ξdir
h .

What we get is ∫
Ω

(aqh) · ph +

∫
Ω

(∇ · qh)uh = 0 ∀ph ∈ Vh,0.

At the same time, we have assumed that∫
Ω

(∇ · qh)vh = 0 ∀vh ∈Mh.

These two equations are the ones of the original RT discretization of a homogeneous
problem (f = 0, g0 = 0, g1 = 0) and, therefore, they imply that qh = 0 and uh = 0. We
then return to the state equation, knowing that qh = 0 and uh = 0 to obtain∑

K∈Th

∫
∂K

ρh(ph · ν) = 0, ∀ph ∈Wh.

We just focus on a single element and take arbitrary constant values on the faces of the
element to see that ρh = 0 on all the faces of that element. Since that can be done element
by element, we have proved that ρh = 0. So far, we have only proved that the extended
system is uniquely solvable. The final part of the argument is easy, but I’ll leave it to
the reader for practice. You show that if (qh, uh, ρh) ∈ Wh ×Mh × Ξh is a solution of
the extended system, then (qh, uh) ∈ Vh ×Mh (note the change in the first space) is the
solution of the original system. The ideas are very much the same that the ones we used
to prove uniqueness.

178

1.2 The hybridized form

Terminology. The expanded formulation we have given in the previous subsection is
not the final goal of this section, but only an intermediate step. It is a hybridizable
formulation that can become a hybrid formulation once we eliminate the unknowns
(qh, uh) from the system and write an equivalent system where only ρh ∈ Ξh appears
as an unknown. The system will be symmetric and positive definite (like the ones for
classical FEM) and it will have the same dimension as the number of faces. The variables
(qh, uh) will be recovered in an element y element postprocessing step. The reason for
calling the final formulation a hybrid formulation is because the resulting system looks
like one of the Hybrid Finite Element Methods that were devised in the eighties. Hybrid
methods, per se, do not seem to be very popular these days1 though. For convenience we
will write

N = dim Ξh = #Fh.

The local systems. Consider the local basis for RT0(K), {NK
α : α = 1, . . . , d+1} and

the following matrices: AK ∈ R(d+1)×(d+1) given by∫
K

(aNK
α) ·NK

β , α, β = 1, . . . , d+ 1,

BK ∈ R(d+1)×1 given by

AK =

[
AK B>K
BK 0

]
∈ R(d+2)×(d+2).

We also need the ‘vector’ fK ∈ R whose only component is

−
∫
K

fK

and the extended vector

bK =

[
0
fK

]
∈ Rd+2.

A final group of large but very sparse global-local matrices are CK ∈ RN×(d+1) with entries∫
Fi

NK
α · ν i = 1, . . . , N, α = 1, . . . , d+ 1,

where the normal vector is outward pointing from the point of view of K and the expanded

CK =
[

CK 0
]
∈ RN×(d+2).

1Many people seem to have forgotten that they even existed. The celebrated monograph Mixed and
hybrid element methods by Franco Brezzi and Michel Fortin —recently expanded with the contribution
of Daniele Boffi— reminds mathematicians of the hybrid methods from time to time. I’ve asked about
them to some colleagues and most of them seem not to have looked at that part of the book. However,
Hybridizable Discontinuous Galerkin methods of all kinds and some modern methods based on Ultra
Weak Variational Formulations are hybrid methods in their particular ways.

179

If
(qK , uk) ∈ Rd+1 × R←→ (qh|K , uh|K) ∈ RT0(K)× P0(K),

and if ρ ∈ RN is the vector of values of ρh ∈ Ξh in the faces Fh, then the local state
equation and conservation equations on the element K are equivalent to

AK

[
qK
uK

]
+ C>Kρ = bK .

Note that C>K ∈ R(d+2)×N has very few non-zero columns, corresponding to the faces
F ∈ F(K), the only ones that participate in the equations on the element K. These
equations say that if we know ρ, we can solve for (qK , uK) element by element.

The global hybridized system. Let us forget for the moment about any kind of
Dirichlet boundary conditions. We construct the global vector g ∈ RN with components

gi =

∫
Fi

g1 if i ∈ Neu, i.e., Fi ∈ Fneu
h ,

0, otherwise.

The local systems derived in the previous paragraph are complemented with the following
block of equations ∑

K∈Th

CK

[
qK
uK

]
= g.

The hybridized system consists of solving the local equations (in terms of ξ, which is not
know yet) [

qK
uK

]
= −A−1

K C>Kρ+ A−1
K bK

and substitute in the newly obtained block of equations(∑
K∈Th

CKA−1
K C>K

)
ρ = −g −

∑
K∈Th

A−1
K bK .

This global system is written in terms of the variable ρ ↔ ρh. We are going to leave it
here with some final comments:

• Imposition of the Dirichlet boundary conditions is equivalent to fixing ρj for j ∈ Dir
and sending that part of the system to the right-hand side. At the same time, the
rows of the global hybridized system corresponding to Dirichlet faces are ignored.

• The matrices CKA−1
K C>K ∈ RN×N can be computed in a reduced R(d+1)×(d+1) form,

corresponding to a local count of the faces of each element. Then they are assembled
into the global system. That part of the code is very similar to the assembly of the
matrix A in the RT system.

• The variable ρh has been introduced as a sort of Lagrange multiplier compensanting
from the fact that we impose the continuity of qh · ν (and the Neumann BC) with
an equation instead of a reduction of the number of unknowns. It is remarkable,
however, that ρh|F ≈ u|F , that is, the value of ρh of F is an approximation of u on
that face.

180

2 Higher order div-conforming elements

2.1 Second order Raviart-Thomas elements

Motivation. We haven’t really talked about convergence of the mixed method (based
on RT elements of the lowest order and piecewise constant functions) for the generalized
Laplacian. We have an abstract theory that gives (after assuming a certain amount of
hypotheses, among which the not-easy-to-grasp inf-sup condition) a Céa-type estimate for
the solution. After that, what is left is using scaling arguments and the Bramble-Hilbert
lemma, using the Raviart-Thomas interpolation operator. Long story short, the order of
convergence for both variables in the natural norms is one

‖qh − q‖div,Ω + ‖u− uh‖Ω = O(h),

assuming that q ∈ H1(Ω)d, that ∇ · q ∈ H1(Ω) and that u ∈ H1(Ω). In this section we
present a second order RT element. Similar to what happens to Lagrange finite elements,
there is a family of RT elements of all orders.

Notation. In addition to the (d+1)-dimensional space of polynomials of degree at most
one, P1(K), we will need to consider the d-dimensional space of homogeneous polynomials
of degree one

P̃1(K) = {a · x : a ∈ Rd} =

{
span{x1, x2} when d = 2,
span{x1, x2, x3} when d = 3,

and the d-dimensional space of polynomials of degree at most one defined on a face
F ∈ F(K)

P1(F) = {p : F → R : p = q|F , q ∈ P1(K)}.

For the arguments that follow, we will assume to have been given a basis of P1(F) for
every face of K

P1(F) = span{ψKα : α = 1, . . . , d}.

The new local RT space. We define

RT1(K) = {p(x) = p1(x) + p̃1(x)x : p1 ∈ P1(K)d, p̃1 ∈ P̃1(K)}
= {p(x) = p1(x) + p1(x)x : p1 ∈ P1(K)d, p1 ∈ P1(K)}.

Note that while the second description of the space is simpler (it doesn’t need the intro-
duction of the space of homogeneous polynomials, it allows for the construction of the
same polynomial with the two different parts of the construction, since ax ∈ P1(K)d when
a ∈ R. Just to be sure that we know what we are talking about, here is a general element
of RT1(K) when d = 2[

a0 + a1x1 + a2x2

b0 + b1x1 + b2x2

]
+ (c1x1 + c2x2)

[
x1

x2

]
.

181

Easy properties.

1. It is easy to check that

dim RT1(K) = ddimP1(K) + dim P̃1(K)

= d(d+ 1) + d = d(d+ 2)

=

{
8, for d = 2
15, for d = 3.

2. It is quite obvious that

P1(K)d ⊂ RT1(K) ⊂ P2(K)d.

3. If p ∈ RT1(K), then

p · νF |F ∈ P1(F) ∀F ∈ F(K).

The reason is the same than in the case of the lowest order RT elements: on F ,
x · νF is a constant.

4. If p = p1 + p̃1 x (with p1 ∈ P1(K)d and p̃1 ∈ P̃1

d
), then

∇ · p = ∇ · p1 +∇p̃1 · x + p̃1(∇ · x)

= ∇ · p1 + p̃1 + p̃1 d = ∇ · p1 + (d+ 1)p̃1.

(We have applied Euler’s homogeneous function theorem, or the very simple argu-
ment that if p̃1 = a · x, then ∇p̃1 = a and therefore ∇p̃1 · x = a · x = p̃1.) This
formula has some consequences. Note that the divergence of the two parts of p
is neatly separated into a constant function (coming for p1) and a multiple of the
homogeneous polynomial p̃1 used in the construction of p. Therefore, if ∇ · p = 0,
it follows that p = p1 ∈ P1(K)d and ∇ · p1 = 0.

The local degrees of freedom. Since we are using these elements to build a Finite
Element space where we need the normal component to be continuous on the interelement
faces, it is natural to start by controling p ·νF ∈ P1(F) on all the faces. This is equivalent
to imposing the DOF ∫

F

(p · νF)ψFα α = 1, . . . , d, F ∈ F(K).

This gives us d(d+1) (d+1 faces and d moments on each face) degrees of freedom. So we
are still short by d conditions from having a well defined set of degrees of freedom. The
additional conditions are defined in the interior of the element. We impose the value of∫

K

p.

182

Is this like a proof? We are next going to shot that these DOF are valid for the space
RT1(K). This can be asserted as the ability to define a local RT interpolation operator:
for arbitrary cFα and a ∈ Rd, there exists a unique p ∈ RT1(K) such that∫

F

(p · νF)ψFα = cFα α = 1, . . . , d, F ∈ F(K),

and ∫
K

p = a.

This is equivalent to (please, make sure that you understand why) proving that if p ∈
RT1(K) satisfies ∫

F

(p · νF)ψFα = o α = 1, . . . , d, F ∈ F(K),

and ∫
K

p = 0,

then p = 0. Note that if ∫
F

(p · νF)ψFα = o α = 1, . . . , d,

then p · νF = 0 on F (this follows from the fact that p · νF |F ∈ P1(F). Therefore, the
cancellation of the boundary DOF implies that p · ν = 0 on ∂K. At the same time, we
know that ∫

K

p · b = 0 ∀b ∈ Rd.

Therefore, for any q ∈ P1(K),

0 =

∫
∂K

(p · ν)q (p · ν = 0 on ∂K)

=

∫
K

p · ∇q +

∫
K

(∇ · p)q (divergence theorem)

=

∫
K

(∇ · p)q. (∇q is constant)

This implies that ∇ · p ∈ P1(K) vanishes (take q = ∇ · p in the previous argument) and
therefore p ∈ P1(K)d (this was one of the easy properties). Take a single face F and its
normal vector νF . Consider the polynomial p · νF ∈ P1(K) (defined in the element, not
only on the face F). This polynomial, of degree one at most, vanishes on the plane (line
when d = 2) containing F , and therefore, has constant sign in K, which lies on one side
of this plane. However, since νF ∈ Rd, we know that∫

K

p · νF = 0.

183

Therefore p · νF ≡ 0. Since we can prove the same result for all the faces, we have
shown that =0 (with d of the normal vectors we can build a basis for Rd). We have
not given many proofs of this type in these notes. I have decided to include it in order
to show how ‘nonlinear’ these arguments are. You start with some of the hypotheses,
conclude something, start using another group of hypotheses and a side argument (an
easy property) to get something else, go back to the first set of conclusions and use the
hypotheses in another way, etc. And this is just a simple particular case. I want to
emphasize that these nifty arguments are prevalent in construction of FE spaces of all
kinds.

The global spaces and the mixed Laplacian. Gluing the local RT spaces we can
build

Vh = RT1
h = {ph : Ω→ Rd : ph ∈ H(div,Ω), ph|K ∈ RT1(K) ∀K ∈ Th}.

Since a function in RT1(K) can be reconstructed by its local degrees of freedom and all
the DOF that control the value of the normal component on a common face are shared
by adjacent elements, it is not difficult to convince yourself (and even prove it!) that

dim RT1
h = d#Fh + d#Th = d(#{faces}+ #{elements}).

This space of discrete vector fields is paired with the space

Mh = {uh : Ω→ R : uh|K ∈ P1(K) ∀K ∈ Th},

containing all piecewise linear (not globally continuous) functions. The dimension of this
space is (d+ 1) times the number of elements. Note that if ph ∈ Vh satisfies∫

Ω

(∇ · ph)vh = 0 ∀vh ∈Mh,

then (take vh = ∇ · ph) ∇ · ph = 0. (This was one of the hypotheses that we required
for the pair Vh × Mh to work as a discretization pair for the mixed Laplacian.) The
uniform discrete inf-sup condition is also satisfied, but we will not show why. Beyond this
(nontrivial) detail, here’s no need to repeat again what we did for the lowest order RT
element. The order of convergence for smooth solutions of the problem is O(h2).

2.2 The lowest order BDM elements

3 Exercises

1. Compute the Lagrange basis for RT1(K̂) in the plane.

2. Let ph ∈ RT1(K) be the RT interpolant of a sufficiently smooth p : K → Rd. Show
that ∫

K

(∇ · ph)q =

∫
K

(∇ · p) q ∀q ∈ P1(K).

(Hint. In case of doubt, integrate by parts!)

184

3. Describe the supports of the global basis functions for RT1
h.

4. Define a global RT interpolation operator for second order RT elements. Show that
the divergence of the interpolant is the best L2(Ω) approximation of the divergence
on the space Mh.

185

Appendices

1 Bookkeeping for P1 elements

A important aspect of the implementation of the Finite Element Method (and of any
other non-trivial numerical method) is the choice of good data structures to store the
necessary information. We are going to detail here one usual option for these structures.
Keep in mind that we are going to see much more complicated methods in the sequel, so
part of what is done here is preparing the ground for more complicated situations.

We assume that the boundary is divided in sides with a numbering of boundary sub-
domains. It is necessary to know what the boundary condition is on each sumdomain and
how to evaluate the corresponding function for the boundary condition. The following

Ω

1

2
4

5

3

Figure 10.1: Numbering of the sides of the boundary

data are needed for the implementation of the P1 finite element method:

• The global number of nodes nNod.

• A numbering of the nodes and their coordinates. This can simply be done by giving
a double vector with the coordinates of all nodes. Numbering is done by component: x1 y1

x2 y2
...

...

186

• The number of triangles.

• A relation of nodes elementwise: n11 n12 n13

n21 n22 n23
...

...
...

(for instance, the 4th row of this matrix are the global indices for the 1st, 2nd and
3rd vertices of the fourth triangle). It is common to expect from a mesh-generator
that the ordering of the nodes is counterclockwise.

• A list of Dirichlet nodes (Dir), mentioning on what boundary subdomain they are
so that we know which function to evaluate.

• The number of Neumann edges (edges that lie on the Neumann boundary)

• A list of the Neumann edges, indicating what their vertices are and on which bound-
ary subdomain they lie.

Usually grid generators give Dirichlet edges instead of nodes, i.e.,

• A list of Dirichlet edges (edges on the Dirichlet boundary), indicating what their
vertices are and on which boundary subdomain they lie.

From this list, the construction of the list Dir and the complementary list Ind is a simple
preprocess that has to be performed before the assembly process is begun.

Let us now detail the example of Lessons 1 and 2. Figure 10.2 gives you a numbering
of the vertices. The triangulation is described with the following data:

7
12

13

9

8

10

6

5

2

3

4

1

17

16

15
11

14

18

Figure 10.2: Global numbering of nodes.

• 18 nodes (of which 6 are Dirichlet nodes)

187

• 23 triangles

• 6 Neumann edges

• Relation between local and global numbering of vertices for triangles:

23 rows

1 3 2
1 4 3
4 8 3
3 6 2
3 7 6
3 8 7
7 12 6
8 12 7
4 9 8
...

...
...

• A list of Dirichlet nodes, indicating the boundary subdomain (the side of Γ) where

they are
9 1
13 1
17 1
18 2
15 2
14 2

(in this list it is not relevant that the order is increasing). Node number 18 could
be placed on the 2nd or the 1st side. Since the Dirichlet condition cannot be
discontinuous in this formulation, it is immaterial which choice is taken.

• The list Ind is obtained from the list {1, 2, . . . , 18} by erasing everything that appears
on the firs column of Dir

Ind = (1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16)

• List of Neumann edges (the third column is the number of the side of Γ where they
are:

14 10 3
10 5 3
5 2 4
2 1 4
1 4 5
4 9 5

As given, all edges are numbered with positive orientation, leaving the exterior
domain outside.

188

• Instead of the list of Dirichlet nodes with their associated boundary side, we could
be given a list of Dirichlet edges with the boundary side (third column)

9 13 1
13 17 1
17 18 1
18 15 2
15 14 2

and build therewith both Dir and Ind.

For P2 elements we also need a list of edges. Unless I made a mistake in counting, we
have 39 edges. We then create a list of edges:

39 rows

1 4
4 9
4 8
4 3
3 8
9 8
9 13
1 3
2 1
2 3
...

...

Note that boundary edges are positively oriented. We also need a list with the edges
organized by element, plus another one with the orientations. Here are the beginning of
these lists:

23 rows

10 9 8
4 8 1
5 4 3
...

...
...

 23 rows

− + +
+ − +
− − +
...

...
...

Let’s have a look at the second element. Its nodes are [4, 8, 3]. If we count locally the
first edge to be facing the first vertex and continue counterclockwise, then the edges are
the fifth one (move from node 8 to node 3), the fourth one (3 to 4), and the third one (4
to 8). However, the edge 5 is numbered 3-to-8 and hence we get a − for the orientation.
Similarly, the edge 4 is numbered 4-to-3 and we get another minus sign. For the final
edge the element and the edge orientations coincide, and we get a plus sign.

2 The one dimensional problem

Here we deal with the simplest model problem in one dimension:

−u′′ + u = f, in (0, 1).

189

For the homogeneous Dirichlet problem, the variational formulation is given in the space

H1
0 (0, 1) :=

{
u ∈ L2(0, 1)

∣∣∣u′ ∈ L2(0, 1), u(0) = u(1) = 0
}
,

whereas the Neumann problem is set in the full Sobolev space

H1(0, 1) :=
{
u ∈ L2(0, 1) : u′ ∈ L2(0, 1)

}
.

A very distinct feature of these spaces in the one-dimensional case is the fact that all
functions in H1(0, 1) are continuous functions. The variational formulation for the homo-
geneous Dirichlet problem, that is, demanding u(0) = u(1) = 0 is u ∈ H1

0 (0, 1),∫ 1

0

u′ v′ +

∫ 1

0

u v =

∫ 1

0

f v, ∀v ∈ H1
0 (0, 1).

The homogeneous Neumann problem is obtained by taking H1(0, 1) as space in the for-
mulation above.

Let us choose a positive integer n and

h :=
1

n+ 1
, 0 = x0 < x1 < x2 < . . . < xn < xn+1 = 1, xj := j h.

The P1 finite element space

Vh :=
{
uh ∈ C[0, 1] : uh|(xi,xi+1) ∈ P1, ∀i

}
has dimension equal to n+ 2. A basis for the space is given by the functions

ϕi(x) :=

x− xi−1

h
, xi−1 ≤ x ≤ xi,

xi+1 − x
h

, i ≤ x ≤ xi+1,

0, otherwise,

with the obvious modifications for the cases j = 0 and j = n+1. A basis for Vh∩H1
0 (0, 1) =

{uh ∈ Vh |uh(0) = uh(1) = 0} is given by the functions {ϕ1, . . . , ϕn}.
Simple computations show that the mass and stiffness matrices (including all degrees

of freedom of the Neumann problem) are respectively

M =
h

6

2 1
1 4 1

1
.
. . . 4 1

1 2

 , W =
1

h

1 −1
−1 2 −1

−1
.
. . . 2 −1
−1 1

 .

190

The blocks obtained by dropping the first and last row and columns of both matrices are
tridiagonal

MDir =
h

6
tridiag(1, 4, 1), WDir =

1

h
tridiag(−1, 2,−1).

The eigenvalues for these two matrices are respectively

λkM,h =
h

3

(
1 + 2 sin2(π h k/2)

)
, λkW,h =

4

h
sin2(π h k/2), k = 1, . . . , n.

It is then clear that the mass matrix is well-conditioned since its eigenvalues can be
ordered as

h

3
< λ1

M,h < . . . < λnM,h < h.

On the other hand

maxk λ
k
W,h

mink λkW,h
=

sin2
(
π
2

n
n+1

)
sin2

(
π
2

1
n+1

) n→∞−→ ∞,

which shows that the stiffness matrix tends to be ill-conditioned, especially as we discretize
with finer grids. Another computation that can be done explicitly in this simple case is the
one of the discrete Dirichlet eigenvalues and eigenvectors. The solutions to the generalized
eigenvalue problem

WDiru = λMDiru

are the values

λkh :=
6

h2

2− 2 cos(πkh)

4 + 2 cos(πkh)
≥ k2π2 = λk, k = 1, . . . , n

that overestimate the exact eigenvalues. The eigenvectors are(
sin(π h k), sin(π h k 2), . . . , sin(π h k n)

)
=
(

sin(π k xj)
)n
j=1

that are exact nodal values of the corresponding eigenfunctions.

3 Bibliography

The literature on Finite Element Methods is huge. Let me mention here some interesting
reference texts, that you should have a look if you try to deepen on either the theory or
the practice of the method.

General books The book

S. C. Brenner and L. R. Scott, The mathematical theory of finite element
methods, 2nd ed., Springer, 2002

is a modern reference for a full account of the theory (numerical analysis) of finite element
methods. The classical reference for mathematicians has been for many years

191

P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Series Studies
in Mathematics and its Applications, North-Holland, Amsterdam, 1978 (also
SIAM, 2002)

although it is a much more difficult book to read. Another modern account of theoretical
(and some practical) aspects of the method, including applications to solid mechanics is

D. Braess, Finite Elements; Theory, Fast Solvers, and Applications in Solid
Mechanics, Cambridge University Press, 1997 (3rd edition, 2007)

If you want to insist on more practical aspects of the method, applications and implemen-
tation, and you are happy with a strong engineering flavor in a numerical book, a good
choice is

T.J.R. Hughes, Finite Element Method - Linear Static and Dynamic Finite
Element Analysis, Prentice-Hall, Englewood Cliffs, 1987 (also Dover, 2000)

Finally, the all-time classical engineering reference for the finite element method is

O.C. Zienkiewicz, R.L. Taylor, The finite element method. Vol. I. Basic
formulations and linear problems. McGraw-Hill, London, 1989

Particular topics. For a posteriori error estimation, see

Mark Ainsworth and John Tinsley Oden, A posteriori error estimation in
finite element analysis. Wiley-Interscience, 2000.

or

Rüdiger Verfürth, A Review of A Posteriori Error Estimation and Adaptive
Mesh-Refinement Techniques. Wiley-Teubner, 1996.

192

Contents

1 Linear triangular elements 3
1 The model problem . 3

1.1 The physical domain . 3
1.2 The problem, written in strong form 4
1.3 Green’s Theorem . 5
1.4 The problem, written in weak form 6
1.5 Delimiting spaces . 7
1.6 The weak form again . 9

2 The space of continuous linear finite elements 10
2.1 Linear functions on a triangle . 10
2.2 Triangulations . 11
2.3 Piecewise linear functions on a triangulation 12
2.4 Dirichlet nodes . 15

3 The finite element method . 18
3.1 The discrete variational problem . 18
3.2 The associated system . 18
3.3 Mass and stiffness . 20

4 Exercises . 22

2 Theoretical and practical notions 24
1 Assembly . 24

1.1 The mass and stiffness matrices . 25
1.2 The reference element . 27
1.3 Computing with quadrature rules 29
1.4 Doing everything on the reference element 30
1.5 Right-hand sides . 31

2 A taste of the theory . 33
2.1 Abstract frame . 33
2.2 Well-posedness . 34
2.3 Galerkin methods . 36
2.4 Convergence of the P1 finite element method 38

3 Quadratic elements . 39
3.1 Local and global descriptions . 40
3.2 The reference element . 42
3.3 Convergence . 43

193

4 Cubic elements and static condensation . 44
4.1 The P3 element . 44
4.2 Static condensation . 45
4.3 Convergence, P4 and higher . 47

5 Exercises . 48

3 New classes of elements 52
1 The lowest order element on parallelograms 52

1.1 The reference space . 53
1.2 The local spaces . 54
1.3 The Q1 finite element method . 56
1.4 Combination of P1 and Q1 elements 58

2 Higher order methods on parallelograms 60
2.1 The Q2 elements . 60

3 Three dimensional domains . 62
3.1 Elements on tetrahedra . 62
3.2 Elements on parallelepipeds . 65

4 Exercises . 65

4 More advanced questions 67
1 Isoparametric elements . 67

1.1 Deformed triangles . 68
1.2 Local spaces . 69
1.3 Finite element spaces with isoparametric triangles 70

2 Elements on quadrilaterals . 74
3 Mass lumping . 76
4 The discrete eigenvalues . 77

4.1 The Dirichlet eigenvalues of the Laplace operator 77
4.2 The discrete Dirichlet eigenvalues 79
4.3 Convergence . 81

5 Exercises . 81

5 Evolution problems 83
1 Forward Euler FEM for the heat equation 83

1.1 Time semidiscretization with the forward Euler method 84
1.2 Full discretization . 86
1.3 Some features of the method . 88
1.4 Stability analysis . 90

2 Backward Euler FEM for the heat equation 93
2.1 Time semidiscretization with the backward Euler method 93
2.2 Full discretization . 94
2.3 Stability analysis . 95

3 Doing first space and then time . 95
4 Some ideas about the wave equation . 98
5 Exercises . 100

194

6 A posteriori error estimation and adaptivity 102
1 Goals and terminology . 102

1.1 Error estimators . 102
1.2 Adaptivity . 103
1.3 A model problem . 104

2 A posteriori estimators . 106
2.1 Residual estimators . 106
2.2 Bubbles and hierarchical estimators 109
2.3 Gradient averaging . 112

3 Refinement of triangular meshes . 114
4 Exercises . 115

7 Polynomial bases and bookkeeping 117
1 Counting degrees of freedom locally . 117

1.1 Barycentric coordinates . 117
1.2 The principal lattice . 119
1.3 Geometric properties of the Lagrange basis 121
1.4 The Bernstein-Bézier basis . 121

2 Hierarchical bases on triangles . 122
2.1 Some univariate sequences . 122
2.2 Hierarchical bases . 124
2.3 Transition elements . 126

3 Assembly . 126
4 Exercises . 128

8 Scaling arguments and FEM analysis 129
1 Moving towards Hilbert spaces . 129

1.1 Energy norm analysis . 129
1.2 General non-symmetric problems 135

2 Scaling of Sobolev norms . 137
2.1 The big picture . 137
2.2 Some geometric ideas . 139
2.3 Scaling inequalities . 141

3 Convergence estimates . 142
3.1 Interpolation error . 142
3.2 Finite Element estimates . 144
3.3 The Aubin-Nitsche trick . 145
3.4 Dirichlet boundary conditions . 147

4 Exercises . 150

9 An introduction to Raviart-Thomas elements 152
1 The mixed Laplacian . 152

1.1 Problems with mixed form . 152
1.2 A taste of theory . 155
1.3 Galerkin approximation . 159

195

2 The Raviart-Thomas space . 162
2.1 The local space . 162
2.2 The global space . 164
2.3 Piola transformations . 165

3 RT discretization of the mixed Laplacian 167
3.1 General ideas . 167
3.2 Direct implementation . 170

4 Exercises . 172

10 More on mixed elements 174
1 Hybridized implementation . 174

1.1 An extended system with more multipliers 174
1.2 The hybridized form . 179

2 Higher order div-conforming elements . 181
2.1 Second order Raviart-Thomas elements 181
2.2 The lowest order BDM elements . 184

3 Exercises . 184

Appendices 186
1 Bookkeeping for P1 elements . 186
2 The one dimensional problem . 189
3 Bibliography . 191

196

